Nitride & Oxy-Nitride Ceramics for High Temperature and Engineering Applications

Article Preview

Abstract:

Nitrides and oxynitrides of silicon and aluminum occupy prominent positions among other non-oxide members of ceramics on account of their inherent unique combination of properties arising out of their directional covalent bonding in the condensed state. Since many reviews could be found in the literature on the materials either individually or combining some of them, the present article is devoted to the key areas of the present research on the developments of these materials. For example, α’ – SiAlON is now attracting significant attention and the article highlights how compositional variations could lead to easy densification and improvement of its mechanical properties. Experimental results from various authors show that the mechanism of stabilization of α’ – SiAlON is very complex and cannot be explained on the basis of the size of the metal cations and solubility in the transient glassy phase. Y, Yb, Dy and to some extent Ca are good for stabilization of the phase. Evolution of different phases during temperature rise and how these phases affect sintering of the α’ material has been presented in this article. In-situ formation of elongated β’ grains have been shown to increase the toughness of the material. Simultaneously, the development of AlN ceramics in regard to application of this ceramic in different areas apart from that of microelectronics has been discussed. +Improved mechanical and electrical properties of AlN and its composites have shown their promise in diverse applications such as armors, electron tube components and dielectric devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-208

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. H. Jack , J. Mater. Sc., 11 (1976) p.1135.

Google Scholar

[2] T. Ekstrom, M. Nygren, J. Amer. Soc, 75(2) (1992) p.259.

Google Scholar

[3] F. L. Riley, J. Am. Ceram. Soc. 83 (2000) p.245.

Google Scholar

[4] G. Petzow, M. Hermann, High Performance Non-Oxide Ceramics II, ed. M. Jansen, (2002) p.47.

Google Scholar

[5] M. P. Borom, G. A. Slack and J. W. Szymaszek , Am. Ceram. Soc. Bull., 51(1972) p.852.

Google Scholar

[6] S. K. Biswas and F.L. Riley Mat. Chem. Phys 67 (2001) p.175.

Google Scholar

[7] G. C. Deeley, J. M. Herbert, N. C. Moore, Powd. Metall. 8, (1961) p.145.

Google Scholar

[8] S. Bandyopadhyay, G. Petzow, Mater. Chem. Phys., 61, (1999) p.9.

Google Scholar

[9] G. Grand, J. Demit, J. Ruste, J. P. Torr, J. Mater. Sc. Lett., 14(7), (1979) p.1749.

Google Scholar

[10] Z. K. Huang, P. Gereil, G. Petzow, J. Amer. Ceram. Soc., 66(6), (1983) pC96.

Google Scholar

[11] D. Stutz, P. Greil, G. Petzow, J. Mater. Sci. Lett., 5(3), (1986) p.335.

Google Scholar

[12] W. Y. Sun, T. Y. Tien, T. S. Yen, J. Amer. Ceram. Soc., 74(1991) p.2547.

Google Scholar

[13] Z. K. Huang, T. Y. Tien, T. S. Yen, J. Amer. Ceram. Soc., 69 (1986), pC241.

Google Scholar

[14] S. Bandyopadhyay, M. J. Hoffmann, G. Petzow, Ceram. Intern., 25, (1999), p.207.

Google Scholar

[15] H. Mandal, D. P. Thompson, T. Ekstrom, J. Eur. Ceram. Soc., 12 (1993) p.421.

Google Scholar

[16] R. Zhao, Y. B. Cheng, J. Eu. Ceram. Soc., 15 (1995) p.1221.

Google Scholar

[17] W. Y. Sun, P. L. Wang, D. S. Yan, Mater. Lett., 26 (1996) p.9.

Google Scholar

[18] R. Zhao, Y. B. Cheng, J. Drennan, J. Eur. Ceram. Soc., 16 (1996) p.529.

Google Scholar

[19] Z. Shen, T. Ekstrom, M. Nygren, J. Eur. Ceram. Soc., 16 (1996) p.873.

Google Scholar

[20] Z. Shen, T. Ekstrom, M. Nygren, J. Eur. Ceram. Soc., 16 (1996) 43-53.

Google Scholar

[21] Z. Shen, T. Ekstrom, M. Nygren,. Amer. Ceram. Soc., 79 (1996) p.721.

Google Scholar

[22] H. Mandal, N. Camuscu, D. P. Thompson, J. Mater. Sci., 30 (1995) p.5901.

Google Scholar

[23] C. L. Hewett, Y. B. Cheng, B. C. Muddle, M. B. Trigg, J. Amer. Ceram. Soc., 81 (1998) p.781.

Google Scholar

[24] A. Nagel, P. Greil, G. Petzow, Revue de Chimie Minerale, t22 (1985) p.437.

Google Scholar

[25] S. Bandyopadhyay, M. J. Hoffmann, G. Petzow, J. Amer. Ceram. Soc., 79 (1996) p.1537.

Google Scholar

[26] S. Bandyopadhyay, J. Eur. Ceram. Soc., 17, (1997) p.929.

Google Scholar

[27] S. Bandyopadhyay, H. S. Maiti, J. Amer. Ceram. Soc. 85 (2002) p.1628.

Google Scholar

[28] D. D. Merchant and T. E. Nemecek, p.19 in Advances in Ceramics, vol 26 Ceramic Substrates and Packages for Electronic Application. Edited by M. F. Yan and H. F. O'Bryan, Jr., K. Niwa and W. S. Young American Ceramic Society, Westerville, OH, (1989).

Google Scholar

[29] L. M. Sheppard, Am. Ceram. Soc. Bull. 69 (1990) p.1801.

Google Scholar

[30] W. Werdecker and F. Aldinger, IEEE Trans., Comp. Hybs Manuf. Tech. , CHMT-7 (1984) p.399.

Google Scholar

[31] R. Mukhopadhyay, Ph.D. Thesis, University Of Calcutta, (2005).

Google Scholar

[32] A. N. Cormack, J. Am. Ceram. Soc. 72(1999) p.1730.

Google Scholar

[33] K. Komeya and H. Inoue, J. Mat. Sci., 4 (1969) p.1045.

Google Scholar

[34] T. Mashimo, M. Uchino, and A. Nakamura J. Appl. Phys. 86 (1999) p.6710.

Google Scholar

[35] H. C. Heard and C.F. Cline, J. Mat. Sci. 15 (1980) p.1889.

Google Scholar

[36] G. A. Slack, J. Phys. Chem. of Solids, 34 (1973) p.321.

Google Scholar

[37] L. Trinkler, B. Berzina, A. Auzina, M. Benabdesselem and P. Iacconi, 8 Nucl. Ins. Meth. Phy. Res. A 580 (2007) p.354.

Google Scholar

[38] Y. G. Gogotsi, J. Desmaison, R. A. Andrievski, D. J. Baxter, M. Desmaison, R. Fordham, G.V. Kalinnikov, V.A. Lavrenko, A.D. Panasyuk, F. Porz, G. Richter, S. Schneider, Key Engg Mat. 132-136 (1997) p.1600.

DOI: 10.4028/www.scientific.net/kem.132-136.1600

Google Scholar

[39] D. S. Perera, Br. Ceram. Trans. J. 89 (1990) p.57.

Google Scholar

[40] F. Roulet, P. Tristant, J, Desmaisons, R. Rezakhanlou and M. Ferrato, J. Eur. Ceram. Soc. 17 (1997) p.1877.

Google Scholar

[41] A. Miyazaki, Y. Nakamura, K. Oshima, Bull. Ceram. Soc Jpn. 30 (1995) p.999.

Google Scholar

[42] J. A. Kuszyk and J. P. Biel Jr., USPatent No. 5637541, (1997).

Google Scholar

[43] C. R. Krolikowsky, U.S. Patent No. 7098159, (2006).

Google Scholar

[44] A. H. Lubis, N. L. Hecht, G. A. Fraves, Jr. and R. Ruh , J. Am. Ceram. Soc., 82(1999) p.2481.

Google Scholar

[45] V. V. R. Reddy, M. Tech Thesis, MNNIT, Allahabad, (2004).

Google Scholar

[46] K. Das, S. K. Biswas and H. S. Maiti, Indian Patent No. 307/DEL/2001, NF162/(2001).

Google Scholar

[47] Z. Zuotai, L. Wenchao and S. Bater Mat. Des. 26 (2005) p.363.

Google Scholar

[48] M. Tajika, H. Matsubara and W. Rafaniello, Mat. Lett. 41 (1999) p.139.

Google Scholar

[49] S. Burkhardt, R. Riedel and G. Muller, J Eur. Cer. Soc. 17 (1997) p.3.

Google Scholar

[50] Y. Gogotsi, F. Porz and V. P. Yaroshenko, J. Am. Ceram. Soc. 75 (1992) p.2251.

Google Scholar

[51] W. Chen and G. Ravichandran, J. Am. Ceram. Soc., 79(1996) p.579.

Google Scholar

[52] D. L. Orphal, R. R. Fanzen, A. J. Piekutowski and M. J. Forrestal, Int.J. Imp. Engg. 18 (1996) p.355.

Google Scholar

[53] W. Rafaniello, US Army Research Report No. AD-A285283., (1992).

Google Scholar

[54] D. E. Grady, Mech. Mat. 29 (1998) p.181.

Google Scholar

[55] G. Subhash and G. Ravichandran, J. Mat. Sci. 33 (1998) p.1933.

Google Scholar

[56] M. Flinders, D. Ray, A. Anderson and R. A. Cutler, J. Am. Ceram. Soc. 88 (2005) p.2217.

Google Scholar

[57] A. K. Mukhopadhyay and S. K. Biswas unpublished work at CGCRI, (2007).

Google Scholar

[58] M. H. Dafadar, K. Das and S. K. Biswas unpublished work at CGCRI, (2004).

Google Scholar

[59] K. Roy , M. E Thesis , Jadavpur University, (2004).

Google Scholar

[60] A. Nakayama, S. Nambu, M. Inagaki, M. Miyauchi and N. Itoh, J. Am. Ceram. Soc. 79 (1996) p.1453.

Google Scholar

[61] E. Savrun, V. Nguyen and N. Gilmore, Report DoE grant no. DE-FG-02-ER83774, Sienna Technologies, USA.

Google Scholar