[1]
S. Iijima: Nature Vol 354 (1991), p.56.
Google Scholar
[2]
S. Iijima, T. Ichihashi: Nature Vol 363 (1993), p.603.
Google Scholar
[3]
M. Valcárcel, B.M. Simonet, S. Cárdenas, B. Suárez: Analytical and Bioanalytical Chemistry Vol 382 (2005), p.1783.
Google Scholar
[4]
M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan: Chem. Phys. Lett. Vol 365 (2002), p.69.
Google Scholar
[5]
M. Foldvari, M. Bagonluri: Nanomed. Nanotechnol. Biol. Med. Vol 4 (2008), p.173.
Google Scholar
[6]
M. Valcarcel, S. Cardenas, B.M. Simonet: Anal. Chem. Vol 79 (2007), p.4788.
Google Scholar
[7]
I. Capek: Adv. Colloid Interface Sci. Vol 150 (2009), p.63.
Google Scholar
[8]
L. Meng, C. Fu, Q. Lu: Progress Nat. Sci. Vol 19 (2009), p.801.
Google Scholar
[9]
C. Klumpp, K. Kostarelos, M. Prato, A. Bianco: Biochim. Biophys. Acta Vol 1758 (2006), p.404.
Google Scholar
[10]
Microchim. Acta Special Issue Vol 152 (2006).
Google Scholar
[11]
M. Foldvari, M. Bagonluri: Nanomed. Nanotechnol. Biol. Med. Vol 4 (2008), p.183.
Google Scholar
[12]
Q. Mu, G. Du, T. Chen, B. Zhang, B. Yan: ACS Nano Vol 3 (2009), p.1139.
Google Scholar
[13]
X. Zhang, L. Meng, Q. Lu: ACS Nano (2009) in press.
Google Scholar
[14]
I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, K.A. Dawson: Adv. Colloid Interface Sci. Vol 134-135 (2007), p.167.
DOI: 10.1016/j.cis.2007.04.021
Google Scholar
[15]
M.J. Esplandiu, M. Pacios, L. Cyganek, J. Bartroli, M. del Valle: Nanotech. Vol 20 (2009), p.355502.
DOI: 10.1088/0957-4484/20/35/355502
Google Scholar
[16]
M. Trojanowicz: TRAC Vol 25 (2006), p.480.
Google Scholar
[17]
J. Wang, Y. Lin: Trends Anal. Chem. Vol 27 (2008), p.619.
Google Scholar
[18]
Q. Mu, W. Liu, Y. Xing, H. Zhou, Z. Li, Y. Zhang, L. Ji, F. Wang, Z. Si, B. Zhang, B. Yan: J. Phys. Chem. C Vol 112 (2008), p.3300.
Google Scholar
[19]
M. Shim, N.W. Shi Kam, R.J. Chen, Y. Li, H. Dai: Nano Lett. Vol 2 (2002), p.285.
Google Scholar
[20]
D. Khang, S.Y. Kim, P. Liu-Snyder, G.T.R. Palmore, S.M. Durbin, T.J. Webster: Biomaterials Vol 28 (2007), p.4756.
Google Scholar
[21]
R.J. Chen, Y. Zhang, D. Wang, H. Dai: J. Am. Chem. Soc. Vol 123 (2001), p.3838.
Google Scholar
[22]
X. Li, W. Chen, Q. Zhan, L. Dai, L. Sowards, M. Pender, R.R. Naik: J. Phys. Chem. B Vol 110 (2006), p.12621.
Google Scholar
[23]
V.Z. Poenitzsch, D.C. Winters, H. Xie, G.R. Dieckmann, A.B. Dalton, I.H. Musselman: J. Am. Chem. Soc. Vol 129 (2007), p.14724.
Google Scholar
[24]
J.J. Davis, M.L.H. Green, H. Allen O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S. Chi Tsang: Inorg. Chim. Acta Vol 272 (1998), p.261.
DOI: 10.1016/s0020-1693(97)05926-4
Google Scholar
[25]
L.E. Valenti, P.A. Fiorito, C.D. Garcia, C.E. Giacomelli: J. Colloid Interface Sci. Vol 307 (2007), p.349.
Google Scholar
[26]
M.F. Mora, C. Giacomelli, C. Garcia: Anal. Chem. Vol 81 (2009), p.1016.
Google Scholar
[27]
B.F. Erlanger, B. -X. Chen, M. Zhu, L. Brus: Nano Lett. Vol 1 (2001), p.465.
Google Scholar
[28]
W. Norde, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 2, Marcel Dekker, Inc (2003).
Google Scholar
[29]
J.J. Ramsden, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 8, Marcel Dekker, Inc (2003).
Google Scholar
[30]
V. Ball, P. Schaaf, J.C. Voegel, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 11, Marcel Dekker, Inc (2003).
Google Scholar
[31]
V. Hlady, J. Buijs, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 21, Marcel Dekker, Inc (2003).
Google Scholar
[32]
M. Malmsten, in Biopolymers at Interfaces. Second Edition, Revised and Expanded, edited by M. Malmsten; chapter 21, Marcel Dekker, Inc (2003).
Google Scholar
[33]
C.E. Giacomelli, in Encyclopedia of Surface and Colloid Science. 2nd Edition, edited by P. Somasundaran volume 1, CRC Press, Taylor and Francis Group (2006).
Google Scholar
[34]
C.E. Giacomelli, W. Norde, in Encyclopedia of Surface and Colloid Science, edited by P. Somasundamn volume 7, CRC Press, Taylor and Francis Group (2006).
Google Scholar
[35]
C. Lamprecht, J. Danzberger, P. Lukanov, C.M. Tîlmaciu, A.M. Galibert, B. Soula, E. Flahaut, H.J. Gruber, P. Hinterdorfer, A. Ebner, F. Kienberger: Ultramicroscopy Vol 109 (2009), p.899.
DOI: 10.1016/j.ultramic.2009.03.034
Google Scholar
[36]
Y. Yang, H. Wang, D.A. Erie: Methods Vol 29 (2003), p.175.
Google Scholar
[37]
S.S. Karajanagi, A.A. Vertegel, R.S. Kane, J.S. Dordick: Langmuir Vol 20 (2004), p.11594.
DOI: 10.1021/la047994h
Google Scholar
[38]
J. Zhong, L. Song, J. Meng, B. Gao, W. Chu, H. Xu, Y. Luo, J. Guo, A. Marcelli, S. Xie, Z. Wu: Carbon Vol 47 (2009), p.967.
DOI: 10.1016/j.carbon.2008.11.051
Google Scholar
[39]
B. Trzaskowski, A.F. Jalbout, L. Adamowicz: Chem. Phys. Lett. Vol 430 (2006), p.97.
Google Scholar
[40]
G.T. Hermanson, A.K. Mallia, P.K. Smith, Immobilized Affinity Ligand Techniques, Academic Press Inc, San Diego, CA, (1992).
Google Scholar
[41]
Y. Gao, I. Kyratzis: Bioconjugate Chem. Vol 19 (2008), p. (1945).
Google Scholar
[42]
P. Asuri, S.S. Bale, R.C. Pangule, D.A. Shah, R.S. Kane, J.S. Dordick: Langmuir Vol 23 (2007), p.12318.
DOI: 10.1021/la702091c
Google Scholar
[43]
L. Yu, C.M. Li, Q. Zhou, Y. Gan, Q.L. Bao: Nanotech. Vol (2007), p.115614.
Google Scholar
[44]
Y. Lin, L.F. Allard, Y. -P. Sun: J. Phys. Chem. B Vol 108 (2004), p.3760.
Google Scholar
[45]
C. Lynam, N. Gilmartin, A.I. Minett, R. O'Kennedy, G. Wallace: Carbon Vol 47 (2009), p.2337.
Google Scholar
[46]
G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado: Talanta Vol 74 (2007), p.291.
DOI: 10.1016/j.talanta.2007.10.013
Google Scholar
[47]
S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos: Adv. Mater. Vol 19 (2007), p.3214.
Google Scholar
[48]
B.C. Satishkumar, L.O. Brown, Y. Gao, C. -C. Wang, H. -L. Wang, S.K. Doorn: Nat. Nano Vol 2 (2007), p.560.
Google Scholar
[49]
J.J. Gooding: Electrochim. Acta Vol 50 (2005), p.3049.
Google Scholar
[50]
J. Wang: Electroanalysis Vol 17 (2005), p.7.
Google Scholar
[51]
P. D'Orazio: Clin. Chim. Acta Vol 334 (2003), p.41.
Google Scholar
[52]
M.S. Alaejos, F.J. Garcia Montelongo: Chem. Rev. Vol 104 (2004), p.3239.
Google Scholar
[53]
J. Wang: Biosens. Bioelectron. Vol 21 (2006), p.1887.
Google Scholar
[54]
M. Rahman, P. Kumar, D. -S. Park, Y. -B. Shim: Sensors Vol 8 (2008), p.118.
Google Scholar
[55]
L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón: Anal. Chim. Acta Vol 622 (2008), p.11.
Google Scholar
[56]
A.J.S. Ahammad, J. -J. Lee, M.A. Rahman: Sensors Vol 9 (2009), p.2289.
Google Scholar
[57]
J. Wang, M. Li, Z. Shi, N. Li, Z. Gu: Anal. Chem. Vol 74 (2002), p. (1993).
Google Scholar
[58]
J. Wang, M. Musameh, Y. Lin: J. Am. Chem. Soc. Vol 125 (2003), p.2408.
Google Scholar
[59]
M. Zhang, A. Smith, W. Gorski: Anal. Chem. Vol 76 (2004), p.5045.
Google Scholar
[60]
M.D. Rubianes, G.A. Rivas: Electrochem. Comm. Vol 9 (2007), p.480.
Google Scholar
[61]
P.P. Joshi, S.A. Merchant, Y. Wang, D.W. Schmidtke: Anal. Chem. Vol 77 (2005), p.3183.
Google Scholar
[62]
S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong: Anal. Chem. Vol 76 (2004), p.1083.
Google Scholar
[63]
S. Hrapovic, E. Majid, Y. Liu, K. Male, J.H.T. Luong: Anal. Chem. Vol 78 (2006), p.5504.
Google Scholar
[64]
Q. Liu, X. Lu, J. Li, X. Yao, J. Li: Biosens. Bioelectron. Vol 22 (2007), p.3203.
Google Scholar
[65]
A.C. Pereira, M.R. Aguiar, A. Kisner, D.V. Macedo, L.T. Kubota: Sens. Actuators B Vol 124 (2007), p.269.
Google Scholar
[66]
D. Du, X. Huang, J. Cai, A. Zhang: Sens. Actuators B Vol 127 (2007), p.531.
Google Scholar
[67]
G. Liu, Y. Lin: Anal. Chem. Vol 78 (2006), p.835.
Google Scholar
[68]
L. Liu, F. Zhang, F. Xi, Z. Chen, X. Lin: J. Electroanal. Chem. Vol 623 (2008), p.135.
Google Scholar
[69]
S. Wang, E.S. Humphreys, S. -Y. Chung, D.F. Delduco, S.R. Lustig, H. Wang, K.N. Parker, N.W. Rizzo, S. Subramoney, Y. -M. Chiang, A. Jagota: Nat. Mater. Vol 2 (2003), p.196.
DOI: 10.1038/nmat833
Google Scholar
[70]
K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker: Nano Lett. Vol 3 (2003), p.727.
Google Scholar
[71]
Y. Wang, P.P. Joshi, K.L. Hobbs, M.B. Johnson, D.W. Schmidtke: Langmuir Vol 22 (2006), p.9776.
Google Scholar
[72]
X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J.D. Gong, S.N. Kim, J. Gillespie, J.S. Gutkind, F. Papadimitrakopoulos, J.F. Rusling: J. Am. Chem. Soc. Vol 128 (2006), p.11199.
DOI: 10.1021/ja062117e
Google Scholar
[73]
S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science Vol 298 (2002), p.2361.
DOI: 10.1126/science.1078727
Google Scholar
[74]
G. Dukovic, B.E. White, Z. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald, T.F. Heinz, R.A. Friesner, N.J. Turro, L.E. Brus: J Am Chem Soc Vol 126 (2004), p.15269.
DOI: 10.1021/ja046526r
Google Scholar
[75]
P.W. Barone, S. Baik, D.A. Heller, M.S. Strano: Nat. Mater. Vol 4 (2005), p.86.
Google Scholar
[76]
P. Cherukuri, S.M. Bachilo, S.H. Litovsky, R.B. Weisman: J. Am. Chem. Soc. Vol 126 (2004), p.15638.
Google Scholar
[77]
K. Welsher, Z. Liu, D. Daranciang, H. Dai: Nano Lett. Vol 8 (2008), p.586.
Google Scholar
[78]
P.W. Barone, R.S. Parker, M.S. Strano: Anal. Chem. Vol 77 (2005), p.7556.
Google Scholar
[79]
X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson: Biomaterials Vol 30 (2009), p.6041.
Google Scholar
[80]
Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. -P. Sun J. Mater. Chem. Vol 14 (2004), p.527.
Google Scholar
[81]
Z. Liu, S. Tabakman, K. Welsher, H. Dai: Nano Research Vol 2 (2009), p.85.
Google Scholar
[82]
A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato: Chem. Commun. Vol (2005), p.571.
Google Scholar
[83]
F. Lu, L. Gu, M.J. Meziani, X. Wang, P.G. Luo, L.M. Veca, L. Cao, Y. -P. Sun: Adv. Mater. Vol 21 (2009), p.139.
Google Scholar
[84]
K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. b. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. -p. Briand, S. Muller, M. Prato, A. Bianco: Nat. Nanotech. Vol 2 (2007), p.108.
DOI: 10.1038/nnano.2006.209
Google Scholar
[85]
N.W. Kam, Z. Liu, H. Dai: Angew. Chem. Ed. Vol 45 (2006), p.577.
Google Scholar
[86]
Y. Sato, A. Yokoyama, K. -i. Shibata, Y. Akimoto, S. -i. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji: Mol. BioSyst. Vol 1 (2005), p.176.
DOI: 10.1039/b502429c
Google Scholar
[87]
V.E. Kagan, Y.Y. Tyurina, V.A. Tyurin, N.V. Konduru, A.I. Potapovich, A.N. Osipov, E.R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, A.A. Shvedova: Toxicol. Lett. Vol 165 (2006), p.88.
DOI: 10.1016/j.toxlet.2006.02.001
Google Scholar
[88]
C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore, C.D. Doyle, J.L. West, W.E. Billups, K.D. Ausman, V.L. Colvin: Toxicol. Lett. Vol 161 (2006), p.135.
DOI: 10.1016/j.toxlet.2005.08.011
Google Scholar
[89]
H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. -P. Briand, M. Prato, S. Muller, A. Bianco: Nano Lett. Vol 6 (2006), p.1522.
DOI: 10.1021/nl061160x
Google Scholar
[90]
B.W. Stewart, P. Kleihues, World Cancer Report World Health Organization Press, Geneva, (2003).
Google Scholar
[91]
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer: Nat Nano Vol 2 (2007), p.751.
Google Scholar
[92]
C. Tripisciano, K. Kraemer, A. Taylor, E. Borowiak-Palen: Chemical Physics Letters Vol 478 (2009), p.200.
DOI: 10.1016/j.cplett.2009.07.071
Google Scholar
[93]
J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima: J. Am. Chem. Soc. Vol 130 (2008), p.16778.
Google Scholar
[94]
G. Pastorin, W. Wu, S. Wieckowski, J.P. Briand, K. Kostarelos, M. Prato, A. Bianco: Chem. Commun. Vol (2006), p.1182.
DOI: 10.1039/b516309a
Google Scholar
[95]
R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard: J. Am. Chem. Soc. Vol 129 (2007), p.8438.
Google Scholar
[96]
W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding, X. Li, Z. Jia, X. Jiang, Y. Hu: ACS Nano Vol (2009).
Google Scholar
[97]
D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. -P. Briand, M. Prato, K. Kostarelos, A. Bianco: Angew. Chem. Int. Ed. Vol 43 (2004), p.5242.
DOI: 10.1002/anie.200460437
Google Scholar
[98]
Y. Liu, D. -C. Wu, W. -D. Zhang, X. Jiang, C. -B. He, T.S. Chung, S.H. Goh, K.W. Leong: Angew. Chem. Int. Ed. Vol 44 (2005), p.4782.
Google Scholar
[99]
N.W.S. Kam, H. Dai: J. Am. Chem. Soc. Vol 127 (2005), p.6021.
Google Scholar
[100]
N.W.S. Kam, T.C. Jessop, P.A. Wender, H. Dai: J. Am. Chem. Soc. Vol 126 (2004), p.6850.
Google Scholar
[101]
N.W.S. Kam, Z. Liu, H. Dai: J. Am. Chem. Soc. Vol 127 (2005), p.12492.
Google Scholar
[102]
Z. Liu, M. Winters, M. Holodniy, H. Dai: Angew. Chem. Int. Ed. Vol 46 (2007), p. (2023).
Google Scholar