Driving Forces and Consequences of the Adsorption of Proteins to Carbon Nanotubes

Article Preview

Abstract:

Different strategies used to biofunctionalize CNTs with proteins, from direct physical adsorption on pristine CNTs to chemical treatments to achieve covalent interaction, are described. The discussion is focused on the consequences of the adsorption process on the structure and properties of both proteins and CNTs. On this base, recent developments in CNTs-proteins based biosensors (electrochemical and optical) and drug delivery systems are reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-94

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol 354 (1991), p.56.

Google Scholar

[2] S. Iijima, T. Ichihashi: Nature Vol 363 (1993), p.603.

Google Scholar

[3] M. Valcárcel, B.M. Simonet, S. Cárdenas, B. Suárez: Analytical and Bioanalytical Chemistry Vol 382 (2005), p.1783.

Google Scholar

[4] M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan: Chem. Phys. Lett. Vol 365 (2002), p.69.

Google Scholar

[5] M. Foldvari, M. Bagonluri: Nanomed. Nanotechnol. Biol. Med. Vol 4 (2008), p.173.

Google Scholar

[6] M. Valcarcel, S. Cardenas, B.M. Simonet: Anal. Chem. Vol 79 (2007), p.4788.

Google Scholar

[7] I. Capek: Adv. Colloid Interface Sci. Vol 150 (2009), p.63.

Google Scholar

[8] L. Meng, C. Fu, Q. Lu: Progress Nat. Sci. Vol 19 (2009), p.801.

Google Scholar

[9] C. Klumpp, K. Kostarelos, M. Prato, A. Bianco: Biochim. Biophys. Acta Vol 1758 (2006), p.404.

Google Scholar

[10] Microchim. Acta Special Issue Vol 152 (2006).

Google Scholar

[11] M. Foldvari, M. Bagonluri: Nanomed. Nanotechnol. Biol. Med. Vol 4 (2008), p.183.

Google Scholar

[12] Q. Mu, G. Du, T. Chen, B. Zhang, B. Yan: ACS Nano Vol 3 (2009), p.1139.

Google Scholar

[13] X. Zhang, L. Meng, Q. Lu: ACS Nano (2009) in press.

Google Scholar

[14] I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, K.A. Dawson: Adv. Colloid Interface Sci. Vol 134-135 (2007), p.167.

DOI: 10.1016/j.cis.2007.04.021

Google Scholar

[15] M.J. Esplandiu, M. Pacios, L. Cyganek, J. Bartroli, M. del Valle: Nanotech. Vol 20 (2009), p.355502.

DOI: 10.1088/0957-4484/20/35/355502

Google Scholar

[16] M. Trojanowicz: TRAC Vol 25 (2006), p.480.

Google Scholar

[17] J. Wang, Y. Lin: Trends Anal. Chem. Vol 27 (2008), p.619.

Google Scholar

[18] Q. Mu, W. Liu, Y. Xing, H. Zhou, Z. Li, Y. Zhang, L. Ji, F. Wang, Z. Si, B. Zhang, B. Yan: J. Phys. Chem. C Vol 112 (2008), p.3300.

Google Scholar

[19] M. Shim, N.W. Shi Kam, R.J. Chen, Y. Li, H. Dai: Nano Lett. Vol 2 (2002), p.285.

Google Scholar

[20] D. Khang, S.Y. Kim, P. Liu-Snyder, G.T.R. Palmore, S.M. Durbin, T.J. Webster: Biomaterials Vol 28 (2007), p.4756.

Google Scholar

[21] R.J. Chen, Y. Zhang, D. Wang, H. Dai: J. Am. Chem. Soc. Vol 123 (2001), p.3838.

Google Scholar

[22] X. Li, W. Chen, Q. Zhan, L. Dai, L. Sowards, M. Pender, R.R. Naik: J. Phys. Chem. B Vol 110 (2006), p.12621.

Google Scholar

[23] V.Z. Poenitzsch, D.C. Winters, H. Xie, G.R. Dieckmann, A.B. Dalton, I.H. Musselman: J. Am. Chem. Soc. Vol 129 (2007), p.14724.

Google Scholar

[24] J.J. Davis, M.L.H. Green, H. Allen O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S. Chi Tsang: Inorg. Chim. Acta Vol 272 (1998), p.261.

DOI: 10.1016/s0020-1693(97)05926-4

Google Scholar

[25] L.E. Valenti, P.A. Fiorito, C.D. Garcia, C.E. Giacomelli: J. Colloid Interface Sci. Vol 307 (2007), p.349.

Google Scholar

[26] M.F. Mora, C. Giacomelli, C. Garcia: Anal. Chem. Vol 81 (2009), p.1016.

Google Scholar

[27] B.F. Erlanger, B. -X. Chen, M. Zhu, L. Brus: Nano Lett. Vol 1 (2001), p.465.

Google Scholar

[28] W. Norde, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 2, Marcel Dekker, Inc (2003).

Google Scholar

[29] J.J. Ramsden, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 8, Marcel Dekker, Inc (2003).

Google Scholar

[30] V. Ball, P. Schaaf, J.C. Voegel, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 11, Marcel Dekker, Inc (2003).

Google Scholar

[31] V. Hlady, J. Buijs, in Biopolymers at Interfaces. Second Edition, Revised and Expanded., edited by M. Malmsten; chapter 21, Marcel Dekker, Inc (2003).

Google Scholar

[32] M. Malmsten, in Biopolymers at Interfaces. Second Edition, Revised and Expanded, edited by M. Malmsten; chapter 21, Marcel Dekker, Inc (2003).

Google Scholar

[33] C.E. Giacomelli, in Encyclopedia of Surface and Colloid Science. 2nd Edition, edited by P. Somasundaran volume 1, CRC Press, Taylor and Francis Group (2006).

Google Scholar

[34] C.E. Giacomelli, W. Norde, in Encyclopedia of Surface and Colloid Science, edited by P. Somasundamn volume 7, CRC Press, Taylor and Francis Group (2006).

Google Scholar

[35] C. Lamprecht, J. Danzberger, P. Lukanov, C.M. Tîlmaciu, A.M. Galibert, B. Soula, E. Flahaut, H.J. Gruber, P. Hinterdorfer, A. Ebner, F. Kienberger: Ultramicroscopy Vol 109 (2009), p.899.

DOI: 10.1016/j.ultramic.2009.03.034

Google Scholar

[36] Y. Yang, H. Wang, D.A. Erie: Methods Vol 29 (2003), p.175.

Google Scholar

[37] S.S. Karajanagi, A.A. Vertegel, R.S. Kane, J.S. Dordick: Langmuir Vol 20 (2004), p.11594.

DOI: 10.1021/la047994h

Google Scholar

[38] J. Zhong, L. Song, J. Meng, B. Gao, W. Chu, H. Xu, Y. Luo, J. Guo, A. Marcelli, S. Xie, Z. Wu: Carbon Vol 47 (2009), p.967.

DOI: 10.1016/j.carbon.2008.11.051

Google Scholar

[39] B. Trzaskowski, A.F. Jalbout, L. Adamowicz: Chem. Phys. Lett. Vol 430 (2006), p.97.

Google Scholar

[40] G.T. Hermanson, A.K. Mallia, P.K. Smith, Immobilized Affinity Ligand Techniques, Academic Press Inc, San Diego, CA, (1992).

Google Scholar

[41] Y. Gao, I. Kyratzis: Bioconjugate Chem. Vol 19 (2008), p. (1945).

Google Scholar

[42] P. Asuri, S.S. Bale, R.C. Pangule, D.A. Shah, R.S. Kane, J.S. Dordick: Langmuir Vol 23 (2007), p.12318.

DOI: 10.1021/la702091c

Google Scholar

[43] L. Yu, C.M. Li, Q. Zhou, Y. Gan, Q.L. Bao: Nanotech. Vol (2007), p.115614.

Google Scholar

[44] Y. Lin, L.F. Allard, Y. -P. Sun: J. Phys. Chem. B Vol 108 (2004), p.3760.

Google Scholar

[45] C. Lynam, N. Gilmartin, A.I. Minett, R. O'Kennedy, G. Wallace: Carbon Vol 47 (2009), p.2337.

Google Scholar

[46] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado: Talanta Vol 74 (2007), p.291.

DOI: 10.1016/j.talanta.2007.10.013

Google Scholar

[47] S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos: Adv. Mater. Vol 19 (2007), p.3214.

Google Scholar

[48] B.C. Satishkumar, L.O. Brown, Y. Gao, C. -C. Wang, H. -L. Wang, S.K. Doorn: Nat. Nano Vol 2 (2007), p.560.

Google Scholar

[49] J.J. Gooding: Electrochim. Acta Vol 50 (2005), p.3049.

Google Scholar

[50] J. Wang: Electroanalysis Vol 17 (2005), p.7.

Google Scholar

[51] P. D'Orazio: Clin. Chim. Acta Vol 334 (2003), p.41.

Google Scholar

[52] M.S. Alaejos, F.J. Garcia Montelongo: Chem. Rev. Vol 104 (2004), p.3239.

Google Scholar

[53] J. Wang: Biosens. Bioelectron. Vol 21 (2006), p.1887.

Google Scholar

[54] M. Rahman, P. Kumar, D. -S. Park, Y. -B. Shim: Sensors Vol 8 (2008), p.118.

Google Scholar

[55] L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón: Anal. Chim. Acta Vol 622 (2008), p.11.

Google Scholar

[56] A.J.S. Ahammad, J. -J. Lee, M.A. Rahman: Sensors Vol 9 (2009), p.2289.

Google Scholar

[57] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu: Anal. Chem. Vol 74 (2002), p. (1993).

Google Scholar

[58] J. Wang, M. Musameh, Y. Lin: J. Am. Chem. Soc. Vol 125 (2003), p.2408.

Google Scholar

[59] M. Zhang, A. Smith, W. Gorski: Anal. Chem. Vol 76 (2004), p.5045.

Google Scholar

[60] M.D. Rubianes, G.A. Rivas: Electrochem. Comm. Vol 9 (2007), p.480.

Google Scholar

[61] P.P. Joshi, S.A. Merchant, Y. Wang, D.W. Schmidtke: Anal. Chem. Vol 77 (2005), p.3183.

Google Scholar

[62] S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong: Anal. Chem. Vol 76 (2004), p.1083.

Google Scholar

[63] S. Hrapovic, E. Majid, Y. Liu, K. Male, J.H.T. Luong: Anal. Chem. Vol 78 (2006), p.5504.

Google Scholar

[64] Q. Liu, X. Lu, J. Li, X. Yao, J. Li: Biosens. Bioelectron. Vol 22 (2007), p.3203.

Google Scholar

[65] A.C. Pereira, M.R. Aguiar, A. Kisner, D.V. Macedo, L.T. Kubota: Sens. Actuators B Vol 124 (2007), p.269.

Google Scholar

[66] D. Du, X. Huang, J. Cai, A. Zhang: Sens. Actuators B Vol 127 (2007), p.531.

Google Scholar

[67] G. Liu, Y. Lin: Anal. Chem. Vol 78 (2006), p.835.

Google Scholar

[68] L. Liu, F. Zhang, F. Xi, Z. Chen, X. Lin: J. Electroanal. Chem. Vol 623 (2008), p.135.

Google Scholar

[69] S. Wang, E.S. Humphreys, S. -Y. Chung, D.F. Delduco, S.R. Lustig, H. Wang, K.N. Parker, N.W. Rizzo, S. Subramoney, Y. -M. Chiang, A. Jagota: Nat. Mater. Vol 2 (2003), p.196.

DOI: 10.1038/nmat833

Google Scholar

[70] K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker: Nano Lett. Vol 3 (2003), p.727.

Google Scholar

[71] Y. Wang, P.P. Joshi, K.L. Hobbs, M.B. Johnson, D.W. Schmidtke: Langmuir Vol 22 (2006), p.9776.

Google Scholar

[72] X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J.D. Gong, S.N. Kim, J. Gillespie, J.S. Gutkind, F. Papadimitrakopoulos, J.F. Rusling: J. Am. Chem. Soc. Vol 128 (2006), p.11199.

DOI: 10.1021/ja062117e

Google Scholar

[73] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science Vol 298 (2002), p.2361.

DOI: 10.1126/science.1078727

Google Scholar

[74] G. Dukovic, B.E. White, Z. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald, T.F. Heinz, R.A. Friesner, N.J. Turro, L.E. Brus: J Am Chem Soc Vol 126 (2004), p.15269.

DOI: 10.1021/ja046526r

Google Scholar

[75] P.W. Barone, S. Baik, D.A. Heller, M.S. Strano: Nat. Mater. Vol 4 (2005), p.86.

Google Scholar

[76] P. Cherukuri, S.M. Bachilo, S.H. Litovsky, R.B. Weisman: J. Am. Chem. Soc. Vol 126 (2004), p.15638.

Google Scholar

[77] K. Welsher, Z. Liu, D. Daranciang, H. Dai: Nano Lett. Vol 8 (2008), p.586.

Google Scholar

[78] P.W. Barone, R.S. Parker, M.S. Strano: Anal. Chem. Vol 77 (2005), p.7556.

Google Scholar

[79] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson: Biomaterials Vol 30 (2009), p.6041.

Google Scholar

[80] Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. -P. Sun J. Mater. Chem. Vol 14 (2004), p.527.

Google Scholar

[81] Z. Liu, S. Tabakman, K. Welsher, H. Dai: Nano Research Vol 2 (2009), p.85.

Google Scholar

[82] A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato: Chem. Commun. Vol (2005), p.571.

Google Scholar

[83] F. Lu, L. Gu, M.J. Meziani, X. Wang, P.G. Luo, L.M. Veca, L. Cao, Y. -P. Sun: Adv. Mater. Vol 21 (2009), p.139.

Google Scholar

[84] K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. b. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. -p. Briand, S. Muller, M. Prato, A. Bianco: Nat. Nanotech. Vol 2 (2007), p.108.

DOI: 10.1038/nnano.2006.209

Google Scholar

[85] N.W. Kam, Z. Liu, H. Dai: Angew. Chem. Ed. Vol 45 (2006), p.577.

Google Scholar

[86] Y. Sato, A. Yokoyama, K. -i. Shibata, Y. Akimoto, S. -i. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji: Mol. BioSyst. Vol 1 (2005), p.176.

DOI: 10.1039/b502429c

Google Scholar

[87] V.E. Kagan, Y.Y. Tyurina, V.A. Tyurin, N.V. Konduru, A.I. Potapovich, A.N. Osipov, E.R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, A.A. Shvedova: Toxicol. Lett. Vol 165 (2006), p.88.

DOI: 10.1016/j.toxlet.2006.02.001

Google Scholar

[88] C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore, C.D. Doyle, J.L. West, W.E. Billups, K.D. Ausman, V.L. Colvin: Toxicol. Lett. Vol 161 (2006), p.135.

DOI: 10.1016/j.toxlet.2005.08.011

Google Scholar

[89] H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. -P. Briand, M. Prato, S. Muller, A. Bianco: Nano Lett. Vol 6 (2006), p.1522.

DOI: 10.1021/nl061160x

Google Scholar

[90] B.W. Stewart, P. Kleihues, World Cancer Report World Health Organization Press, Geneva, (2003).

Google Scholar

[91] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer: Nat Nano Vol 2 (2007), p.751.

Google Scholar

[92] C. Tripisciano, K. Kraemer, A. Taylor, E. Borowiak-Palen: Chemical Physics Letters Vol 478 (2009), p.200.

DOI: 10.1016/j.cplett.2009.07.071

Google Scholar

[93] J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima: J. Am. Chem. Soc. Vol 130 (2008), p.16778.

Google Scholar

[94] G. Pastorin, W. Wu, S. Wieckowski, J.P. Briand, K. Kostarelos, M. Prato, A. Bianco: Chem. Commun. Vol (2006), p.1182.

DOI: 10.1039/b516309a

Google Scholar

[95] R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard: J. Am. Chem. Soc. Vol 129 (2007), p.8438.

Google Scholar

[96] W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding, X. Li, Z. Jia, X. Jiang, Y. Hu: ACS Nano Vol (2009).

Google Scholar

[97] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. -P. Briand, M. Prato, K. Kostarelos, A. Bianco: Angew. Chem. Int. Ed. Vol 43 (2004), p.5242.

DOI: 10.1002/anie.200460437

Google Scholar

[98] Y. Liu, D. -C. Wu, W. -D. Zhang, X. Jiang, C. -B. He, T.S. Chung, S.H. Goh, K.W. Leong: Angew. Chem. Int. Ed. Vol 44 (2005), p.4782.

Google Scholar

[99] N.W.S. Kam, H. Dai: J. Am. Chem. Soc. Vol 127 (2005), p.6021.

Google Scholar

[100] N.W.S. Kam, T.C. Jessop, P.A. Wender, H. Dai: J. Am. Chem. Soc. Vol 126 (2004), p.6850.

Google Scholar

[101] N.W.S. Kam, Z. Liu, H. Dai: J. Am. Chem. Soc. Vol 127 (2005), p.12492.

Google Scholar

[102] Z. Liu, M. Winters, M. Holodniy, H. Dai: Angew. Chem. Int. Ed. Vol 46 (2007), p. (2023).

Google Scholar