High Resolution Electron Microscopy: A Powerful Tool to Characterize Nanotubes

Article Preview

Abstract:

On the landscape of the nanoscience and nanothecnology carbon nanotubes (1) have played an important role on the development of 1D materials. They consist of single (SWCNT) or multi (MWCNT) layers of graphene cylinders arranged around a central hollow. In the case of the SWCNT the size distribution is narrow (1-2 nm) while it is broader for MWCNT (2-25 nm) exhibiting a constant separation between layers, nearly equal to that of graphite-layer spacing (0.34 nm). In both cases, the length extends up to several microns. These characteristics provide large external and internal surfaces making both functionalization and filling processes very attractive for potential performances in several areas like electronic, spintronic, or drug release

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-119

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ijima, Nature 354, 56 (1991).

Google Scholar

[2] R. Tenne, L. Margulis, M. Genut, G. Holder, Nature 360, 444 (1992).

Google Scholar

[3] B. Schonfeld, J. J. Huang, S. C. Moss, Acta Crystallogr. B39, 404 (1983).

Google Scholar

[4] L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nature 365, 113 (1993).

DOI: 10.1038/365113b0

Google Scholar

[5] C. Schuffenhauer, R. Popovitz-Biro, R. Tenne, J. Mater. Chem. 12, 1587 (2002).

Google Scholar

[6] J. Etzkorn et al, Adv. Mater 17, 2372 (2005).

Google Scholar

[7] A. Margolin, R. Popovitz-Biro, A. Albu-Yaaron, L. Rapoport, R. Tenne, Chem. Phys. Lett. 411, 162 (2005) 8. Y. Rosenfel Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J. L. Hutchison Nature 395, 336 (1998).

DOI: 10.1016/j.cplett.2005.05.094

Google Scholar

[9] R. Popovitz-Biro, N. Sallacan, r. Tenne, J. Mater. Chem. 13, 1631 (2003).

Google Scholar

[10] A. Albu-Yaron et al Angew. Chem. Int. Ed. 44, 4169 (2005).

Google Scholar

[11] P. M. Ajayan, O. Stephan, P. Redlich, C. Colliex Nature 375, 564 (1995).

Google Scholar

[12] S. Zhang, Q. Chen, and L. -M. Peng, Phys. Rev. B 71, 014104 (2005).

Google Scholar

[13] N. G. Chopra, R. G. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science 269, 966 (1995).

DOI: 10.1126/science.269.5226.966

Google Scholar

[14] O. Stephan, Y. Bando, A. Loiseau, F. Williame, N. Schramechenko, T. Tamiya, T. Sato Appl. Phys. A: Mater. Sci. Process 67, 107 (1998).

Google Scholar

[15] M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Angew. Chem. Int. Ed. 37(9) 1263 (1998).

Google Scholar

[16] F. Krumeich, H. J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, J. Am. Chem. Soc. 121, 8324 (1999).

DOI: 10.1021/ja991085a

Google Scholar

[17] Thomas Chirayil, Peter Y. Zavalij, and M. Stanley Whittingham, Chem. Mater., 10, 2629 (1998).

Google Scholar

[18] P. Hayer, Langmuir 12, 1411 (1996).

Google Scholar

[19] Chun-Jiang Jia, Ling-Dong Sun, Zheng-Guang Yan, Li-Ping You, Feng Luo, Xiao-Dong Han, Yu-Cheng Pang, Ze Zhang, and Chun-Hua Yan, Angew. Chem. Int. Ed. 44, 4328 (2005).

DOI: 10.1002/anie.200463038

Google Scholar

[20] Jun-Yan Gong, Shi-Rui Guo, Hai-Sheng Qian, Wei-Hong Xu and Shu-Hong Yu, J. Mater. Chem. 19, 1037 (2009).

Google Scholar

[21] B. A. Hernandez, K. S. Chang, E. R. Fisher, P. K. Dorhout, Chem. Mater 14, 480 (2002).

Google Scholar

[22] P. Levya, A. G. Leyva, H. E. Troiani and R. D. Sanchez, Applied. Phys. Lett. 83, 5247 (2003).

Google Scholar

[23] Transmission Electron Microscopy. A Textbook for Materials Science, David B. Williams and C. Barry Carter. Plenum Press New York (1996).

Google Scholar

[24] High-Resolution Electron Microscopy for Materials Science. D. Shindo and K. Hiraga. Springer-Verlag Tokio (1998).

Google Scholar

[25] R. R Meyer, A.I. Kirkland, W. O . Saxton, Ultramicroscopy 92, 89 (2002).

Google Scholar

[26] Y. Ikuhara, N. Shibata, T. Mizoguchi, T. Yamamoto JEOL News 43 (1), 2 (2008).

Google Scholar

[27] O.L. Krivanek, N. Dellby, A.R. Lupini, Ultramicroscopy 78, 1 (1999).

Google Scholar

[28] C. Hetherington Materials Today, 50 (2003).

Google Scholar

[29] J.H. Chena, H.W. Zandbergena, D. Van Dyck, Ultramicroscopy 98, 81 (2004).

Google Scholar

[30] C.L. Jia, M. Lentzen, K . Urban Science 299, 870 (2003).

Google Scholar

[31] Jia CL, Lentzen M, Urban K (2004).

Google Scholar

[35] C.N.R. Rao, M. Nath, Dalton Trans, 1 (2003).

Google Scholar

[36] A. Enyashin, S. Gemming, G. Seifert, Eur. Phys. J. Special Topics 149, 103 (2007).

Google Scholar

[37] R. L. D. Whitby, W. K. Hsu, C. B. Bothroyd, P. K. Fearon, H. W. Kroto and D. R. M. Walton, Chem. Phys. Chem. 10, 620 (2001).

Google Scholar

[38] M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsÿar, P. Stadelmann, F. Levy, D. Mihailovic, Science 292, 479 (2001).

DOI: 10.1126/science.1059011

Google Scholar

[39] L. Margulis, P. Dluzeweski, Y. Feldman, R. Tenne, J. of Microscopy 181, 68 (1996).

Google Scholar

[40] L. A. Bursill, J. L. Hutchison, N. Sumida, A. R. Lang, Nature 292, 518 (1981).

Google Scholar

[41] S. Nicolopoulos, J. M. Gonzalez-Calbet, M. P. Alonso, M. T. Gutierrez-Rios, M. I. de Frutos, M. Vallet-Regi, J. Solid State Chem. 116, 265 (1995).

DOI: 10.1006/jssc.1995.1212

Google Scholar

[42] M. b. Sadan, L. Houben, A. N. Enyashin, G. Seifert, R. Tenne PNAS 105, 15643 (2008).

Google Scholar

[43] P. M. Ajayan, S. Ijima, Nature 361, 333 (1993).

Google Scholar

[44] J. Sloan, J. Hammer, M. Zwiefka-Sibley, M. L. H. Green, J. Chem. Soc., Chem. Commun., 347 (1998).

Google Scholar

[45] Handbook of Nanostructured Materials and Nanotechnology, edited by H. S. Nalwa. Volume 5: Poymers and Biological materials. Chapter 7 Encapsulation and crystallization behaviour of materials inside carbon nanotubes. J. Sloan M. L. H. Green.

DOI: 10.1016/b978-012513760-7/50059-9

Google Scholar

[46] R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. I. Kirkland, M. c. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green, Science 289, 1324 (2000).

DOI: 10.1126/science.289.5483.1324

Google Scholar

[47] R. Kreizman, S.Y. Hong, J. Sloan, R. Popovitz-Biro, A. Albu-Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, Angew. Chem. Int. Ed. 48, 1230 (2009).

DOI: 10.1002/anie.200803447

Google Scholar

[48] M. Remskar, Adv. Mater 16, 1497 (2004).

Google Scholar

[49] Y. Xiong, B. T. Mayers, Y. Xia, Chem. Commun, 5013 (2005).

Google Scholar

[50] J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, P.D. Yang, Nature 422, 599 (2002).

Google Scholar

[51] C. Jia, L. Sun, Z. Yan, L. You, F. Luo,X. Han, Y. Pang, Z. Zhang, C. Yan, Angew. Chem. Int. Ed. 44, 4328 (2004).

Google Scholar

[52] L. P. Zanello, B. Zhao, H. Hu and R. C. Haddon, Nano Lett. 6, 562-567 (2006).

Google Scholar

[53] G. Jell, R. Verdejo, L. Safinia, M. S. P. Shaffer, M. M. Stevens and A. Bismarck, J. Mater. Chem. 18, 1865 (2008).

DOI: 10.1039/b716109c

Google Scholar

[54] J. Goldberger, R. Fan, P. Yang, Acc. Chem. Res 39, 239 (2006). 55. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, C. R. Martin, J. Am. Chem. Soc. 124, 11864 (2002).

DOI: 10.1021/ja027247b

Google Scholar

[56] R. Chen, M. H. So, J. Yang, F. Deng, C. M. Che, H. Sun, Chem. Commun, 2265 (2006).

Google Scholar

[57] C. Zhi, Y. Bando, C. Tang, D. Glberg J. Am. Chem. Soc. 127, 17144 (2005).

Google Scholar

[58] K. Suenaga, Y. Sato, Z. Liu, M. Koshino, C. Jin, JEOL News 44, 32 (2009).

Google Scholar