[1]
J. M. Henderson, and R. E. Quandt, Microeconomic Theorey. 2nd edition, McGraw-Hill, New York, (1971).
Google Scholar
[2]
C. D. Maranas, I. P. Androulakis, C. A. Floudas, A. J. Berger and J. M. Mulvey, Solving long-term financial planning problems via global optimization. J. Economic Dynamics & Control 21 (1997), 1405-1425.
DOI: 10.1016/s0165-1889(97)00032-8
Google Scholar
[3]
H. M. Markowitz, Portfolio Selection. Basil Blackwell Inc. Oxford, 2nd edition, (1991).
Google Scholar
[4]
I. Quesada and I. E. Grossmann, Alternative bounding approximations for the global optimization of various engineering design problems. In I.E. Grossmann, (ed. ), Global Optimization in Engineering Design, Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Norwell, MA, 9 (1996).
DOI: 10.1007/978-1-4757-5331-8_10
Google Scholar
[5]
J. M. Mulvey, R. J. Vanderbei and S.A. Zenios, Robust optimization of large-scale systems. Oper. Res. 43 (1995), 264-281.
DOI: 10.1287/opre.43.2.264
Google Scholar
[6]
P. S. V. Nataray, K. Kotecha, Global optimization with higher order inclusion function forms, part1: a combined Taylor–Bernsteinform, Reliable Computing 1 (2004), 27-44.
DOI: 10.1023/b:reom.0000003995.08805.2a
Google Scholar
[7]
T. Kuno, A finite branch and bound algorithm for linear multiplicative programming. Comput. Optim. Appl. 20 (2001), 119-135.
Google Scholar
[8]
H. S. Ryoo and N. V. sahinidis, Global Optimization of Multiplicative Programs. J. Glob. Optim. 26 (2003), 387-418.
Google Scholar
[9]
Y. L. Gao, C. X. Xu, Y. L. Yan, An outcome-space finite algorithm for solving linear multiplicative programming. Appl. Math. Comput. 179(2) (2006), 494-505.
DOI: 10.1016/j.amc.2005.11.111
Google Scholar
[10]
H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming. J. Optim. Theory Appl. 104 (2000), 301-322.
DOI: 10.1023/a:1004657629105
Google Scholar
[11]
X.J. Liu, T. Umegaki, and Y. Yamamoto, Heuristic methods for linear multiplicative programming. J. Glob. Optim. 4 (1999), 433-447.
Google Scholar
[12]
S. Schaible and C. Sodini, Finite algorithm for generalized linear multiplicative programming. J. Optim. Theory Appl. 87(2) (1995), 441-455.
DOI: 10.1007/bf02192573
Google Scholar
[13]
P. P. Shen, H. W. Jiao, Linearization method for a class of multiplicative programming with exponent. Appl. Math. Comput. 183(1) (2006), 328-336.
DOI: 10.1016/j.amc.2006.05.074
Google Scholar
[14]
N. T. Hoai-Phuony, H. Tuy, A unified monotonic approach to generalized linear fractional programming. J. Glob. Optim. 26 (2003), 229-259.
Google Scholar
[15]
H. Jiao, et al. Optimization method for solving a kind of multiplicative problems, Applied Mechanical and Material, (2011), in press.
Google Scholar
[16]
H. Jiao, P. Shen. A note on the paper global optimization of nonlinear sum of ratios, Appl. Math. Comput., 188 (2007), 1812-1815.
DOI: 10.1016/j.amc.2006.11.047
Google Scholar
[17]
P. Shen, H. Jiao. A new rectangle branch-and-pruning approach for generalized geometric programming, Appl. Math. Comput., 183 (2006), 1027-1038.
DOI: 10.1016/j.amc.2006.05.137
Google Scholar
[18]
P. Shen, G. Yuan. Global optimization for sum of generalized polynomial fractional functions. Mathematical Methods of Operational Research, 65(3) (2007), 445-459.
DOI: 10.1007/s00186-006-0130-0
Google Scholar