The Influence of Mercerised Kenaf Fibres Reinforced Polylactic Acid Composites on Dynamic Mechanical Analysis

Article Preview

Abstract:

The potential of using cellulose to reinforce the thermal stability of kenaf derived cellulose (KDC)/polylactic acid (PLA) composite was investigated in this study. The cellulose was derived from kenaf bast fibre which was chemically treated via chlorination and mercerisation processes. The composites with various loadings of cellulose (dry weight basis) ranging from 0% to 60% were produced by melt mixing and compression moulding. Dynamic mechanical properties namely storage modulus (E’), loss modulus (E”) and tan δ of the KDC/PLA composites and the commercial PLA were analysed and compared as a function of temperature. ESEM micrographs demonstrated that the mercerisation of kenaf fibres have successfully removed the lignin and hemicellulose, thus producing cellulose which can be observed by its rougher surface and greater size reduction than the raw fibre. The DMA results demonstrated that the storage modulus of 60% KDC/PLA composite is twice higher than the commercial PLA and the rest of the composites within a high temperature range (above 80°C). The glass transition temperatures (Tg) generated from the loss modulus curves exhibit that the peak of the loss modulus was shifted to higher temperature as the percentage of the cellulose loading was increased. These results show a better thermal stability of the composites when incorporated with the cellulose.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Pages:

815-820

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on: http: /www. ids-publishing. com/publishing/europe/EUROPEN/Packaging_ Industry_Trade_Organization/13_0/g_supplier. html.

Google Scholar

[2] R. Auras, B. Harte, and S. Selke: Macromolecular Bioscience Vol. 4 (2004), pp.835-864.

Google Scholar

[3] P.R. Gruber: Industrial Ecology Vol. 7 (2003), pp.209-213.

Google Scholar

[4] D.E. Henton, P. Gruber, J. Lunt and J. Randall, in: Natural Fibers, Biopolymers and Biocomposites, edited by A. K. Mohanty, M. Misra and L.T. Drzal CRC Press, London (2005), pp.528-568.

DOI: 10.1201/9780203508206.ch16

Google Scholar

[5] K. Oksman, M. Skrifvars and J.F. Selin: Composites Science and Technology Vol. 63 (2003), pp.1317-1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[6] M.S. Huda, L.T. Drzal, A.K. Mohanty and M. Misra: Composites Science and Technology Vol. 68 (2008), pp.424-432.

Google Scholar

[7] A.K. Bledzki, A. Jaszkiewicz and D. Scherzer: Composites Part A: Applied Science and Manufacturing Vol. 40 (2009), pp.404-412.

DOI: 10.1016/j.compositesa.2009.01.002

Google Scholar

[8] Information on: http: /www. introp. upm. edu. my/PDF/intropica1. pdf.

Google Scholar

[9] I.S. Aji, S.M. Sapuan, E. S Zainudin and K. Abdan: International Journal of Mechanical and Materials Engineering Vol. 4 (2009), pp.239-248.

Google Scholar

[10] A. Ashori, J. Harun, W.D. Raverty and M.N.M. Yusoff: Polymer-Plastics Technology and Engineering Vol. 45 (2006), pp.131-134.

DOI: 10.1080/03602550500373782

Google Scholar

[11] T. Nishino, K. Hirao, M. Kotera, K. Nakamae and H. Inagaki: Composites Science and Technology Vol. 63 (2003), pp.1281-1286.

DOI: 10.1016/s0266-3538(03)00099-x

Google Scholar

[12] N.A. Ibrahim, W.M.Z. Wan Yunus, M. Osman, K. Abdan and A. Hadithon: Reinforced Plastic and Composites Vol. 29 (2010), pp.1099-1111.

DOI: 10.1177/0731684409344651

Google Scholar

[13] K. Goda, M.S. Sreekala, A. Gomes, T. Kaji and J. Ohgi: Composites Part A: Applied Science and Manufacturing Vol. 37 (2006), pp.2213-2220.

DOI: 10.1016/j.compositesa.2005.12.014

Google Scholar

[14] H. Sixta: Handbook of Pulp (Wiley-VCH Verlag GMBbH, & CoKGaA, Germany 2006).

Google Scholar

[15] B. Tajeddin, R.A. Rahman and L. C. Abdullah: American-Eurasian Journal of Agriculture & Environment Sciences Vol. 5 (2009), pp.777-785.

Google Scholar

[16] M. Khalid, C.T. Ratnam, T.G. Chuah, S. Ali and T.S.Y. Chong: Materials and Design Vol. 29 (2008), pp.173-178.

Google Scholar

[17] I.S.M.A. Tawakkal, R.A. Talib, A. Khalina, N.L. Chin and M.N. Ibrahim: Asian Journal of Chemistry Vol. 22 (2010), pp.6652-6662.

Google Scholar

[18] K. Joseph and S. Thomas: Polymer Vol. 37(1996), pp.5139-5149.

Google Scholar

[19] L.Y. Mwaikambo and M.P. Ansell in: The Effect of Chemical Treatment on the Properties of Hemp, Sisal, Jute and Kapok Fibres for Composite Reinforcement, 2nd International Wood and Natural Fibre Composites Symposium, Kassel/Germany, June 28-29 (1999).

DOI: 10.1002/(sici)1522-9505(19991201)272:1<108::aid-apmc108>3.0.co;2-9

Google Scholar

[20] L. Liu, M.L. Fishman, K.B. Hicks and C.K. Liu: Agricultural and Food Chemistry Vol. 53 (2005), pp.9017-9022.

Google Scholar

[21] N. Sgriccia, M.C. Hawley and M. Misra: 2008. Composites Part A: Applied Science and Manufacturing Vol. 39(2008), pp.1632-1637.

DOI: 10.1016/j.compositesa.2008.07.007

Google Scholar

[22] M.S. Huda, L.T. Drzal, M. Misra and A.K. Mohanty: Applied Polymer Science Vol. 102(2008), pp.4856-4869.

Google Scholar

[23] R.M. Soom, W.H. Wan Hassan, A.G. MD Top and K. Hassan: Oil Palm Research Vol. 18 (2006), pp.272-277.

Google Scholar

[24] S. Mohanty, S.K. Verma and S.K. Nayak: Composites Science and Technology Vol. 66 (2006), pp.538-547.

Google Scholar

[25] B. John, K.T. Varughese, Z. Oommen, P. Pötschke and S. Thomas: Applied Polymer Science Vol. 87 (2003), p.2083-(2099).

Google Scholar

[26] L.E. Nielsen and R.F. Landel: Mechanical Properties of Polymers and Composites Marcel Dekker Inc., New York (1994).

Google Scholar

[27] T. Yu, J. Ren, S. Li, H. Yuan and Y. Li: Composites Part A: Applied Science and Manufacturing 41(2010), pp.499-505.

Google Scholar