Molecular Dynamic Simulations of Contact Thermal Resistance between Two Individual Silicon Nanowires

Article Preview

Abstract:

Contact thermal resistance between two individual silicon nanowires is investigated by nonequilibrium molecular dynamic simulations as a function of temperature, overlap, bonding strength and spacing between them. The results indicate that contact thermal resistance per unit area increases with temperature increasing. The increasing overlap leads to the increase of the contact areas, which enhances the per unit area contact thermal resistance. With a weakened interfacial van der Waals bonding strength, the contact thermal resistance per unit area increases significantly. Additionally, a method to verify the effect of the bonding strength is used by changing the interfacial spacing, and a reasonable result is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

663-667

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.G. Cahill, W.K. Ford, K.E. Goodson, et al : J. Appl. Phys. Vol. 93 (2003), p.793.

Google Scholar

[2] P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Phys. Rev. Lett. Vol. 87 (2001), 215502: 1-4.

Google Scholar

[3] E. Artukovic, M. Kaempgen, D. Hecht, S. Roth, G. Gruner: Nano Letters. Vol. 5 (2005), p.757.

Google Scholar

[4] S. T. Huxtable, D. G. Cahill, S. Shenogin, et al. Nature Materials. Vol. 2 (2003), p.731.

Google Scholar

[5] S. Maruyama, Y. Igarashi, Y. Taniguchi, Y. Shibuta, in: The 1st International Symposium on Micro and Nano Technology, edit by M. Inoue (Pacific Center of Thermal-Fluids Engineering, 2004).

Google Scholar

[6] J. Hone, M. Whitney, C. Piskoti, A. Zettl: Phys. Rev. B Vol. 59 (1999), P. 2514.

Google Scholar

[7] S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, D. G. Cahill: J. Appl. Phys. Vol. 95 (2004), p.8136.

Google Scholar

[8] R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo: Phys. Rev. Lett. Vol. 102 (2009), 105901 : 1-4.

Google Scholar

[9] H. Zhong, J. R. Lukes: Phys. Rev. B. Vol. 74 (2006), 125403 : 1-10.

Google Scholar

[10] J.K. Yang, S. Waltermire, Y.F. Chen, A. Zinn, T. Xu, D.Y. Li: Appl. Phys. Lett. Vol. 96 (2010), 023109: 1-3.

Google Scholar

[11] X.P. Huang, X.L. Huai: Chin. Phys. Lett. Vol. 25 (2008), p.2973.

Google Scholar

[12] F.H. Stillinger, T.A. Webber: Phys. Rev. B Vol. 32 (1985), p.5402.

Google Scholar

[13] G. L. Pollack, Kapitza Resistance. Rev. Mod. Phys. Vol. 41 (1969), p.48.

Google Scholar

[14] V. Bahadur, J. Xu, Y. Liu, T.S. Fisher: Trans. ASME, Vol. 664 (2005), p.127.

Google Scholar

[15] R. Prasher: Appl. Phys. Lett. Vol. 94 (2009), 041905: 1-3.

Google Scholar

[16] X. H. Yan, Y. Xiao, Z.M. Li: J. Appl. Phys, Vol. 99 (2006), 124305 : 1-4.

Google Scholar