WC/Ti Composite Material Enriched with CBN Particles Produced by Pulse Plasma Sintering (PPS)

Article Preview

Abstract:

Tungsten carbide (WC) and WCCo powders added with 30 vol.% cubic boron nitride (cBN) and 5 and 12 wt% of Ti were sintered by the pulse plasma sintering (PPS) technique. The sintering process was conducted under a load of 75 MPa at a pressure of 5.10- 5 mbar and a temperature of 1100-1500°C for 5min. The phase composition, density, hardness and microstructure of the sintered material thus obtained were examined. In the cBN-WCTi5wt% composite with an addition of 6wt% Co, the cBN particles are well bound with the matrix. The transcrystalline fractures of the cBN particles also indicate that the binding forces between these particles and the WCCoTi matrix exceed the matrix cohesion. The interfaces between the cBN grains and the surrounding matrix are almost straight lines, and no reactions between the cBN grains and the matrix were revealed in SEM observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-134

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Huang, Y. K Chou, S.Y. Liang: J. Adv. Manuf. Technol., Vol. 35 (2007) p.443.

Google Scholar

[2] M. Keunecke, E. Wiemann, K. Weigel, S. Park, K. Bewilogua: Tin Solid Films, Vol. 515 (2006) p.962.

DOI: 10.1016/j.tsf.2006.07.057

Google Scholar

[3] J. Echeberria, V. Martınez, J. M. Sanchez, L. Bourgeois, G. Barbier, and J. Hennicke: 16th Plansee Seminar, Vol. 2 (2005) p.434.

Google Scholar

[4] L. Bourgeois, G. Barbier, J. Hennicke, H.U. Kessel, V. Martinez, J. Echeberria, J.M. Sanchez, and P. Harden: 16th Plansee Seminar, Vol. 2 (2005) p.684.

Google Scholar

[5] I.A. Petrushc: Diamond Relat. Mater., Vol. 9 (2000) p.1487.

Google Scholar

[6] W. Koning, A. Neises: Wear, Vol. 162 (1993) p.153.

Google Scholar

[7] Y. Zhao, M. Wang: J. Mat. Proc. Techn., Vol. 198 (2008) p.134.

Google Scholar

[8] X.L. Shi, G.Q. Shao, X.L. Duan and R. Zh. Yuan: Key Engineering Materials, Vol. 336 (2007) p.1053.

Google Scholar

[9] V. Martinez, J. Echeberria: J. Am. Ceram, Soc., Vol. 90 (2007) p.415.

Google Scholar

[10] A. Michalski, D. Siemiaszko: International Journal of Refractory Metals & Hard Materials, Vol. 25 (2007) p.153.

Google Scholar

[11] A. Michalski, M. Rosiński: Journal of the American Ceramic Society, Vol. 91 (2008) p.3560.

Google Scholar

[12] T. Schubert, Ł. Ciupiński, W. Zieliński, A. Michalski, T. Weißgarbera and B. Kiebacka: Scripta Materialia, Vol. 58 (2008) p.263.

Google Scholar

[13] A. Michalski, J. Jaroszewicz, M. Rosiński, D. Siemiaszko, K. J. Kurzydłowski: Solid State Phenomena, Vol. 114 (2006) p.227.

Google Scholar

[14] A. Michalski, M. Rosiński, D. Siemiaszko, J. Jaroszewicz, K. J. Kurzydłowski: Solid State Phenomena, Vol. 114 (2006) p.239.

Google Scholar

[15] M. Rosiński, A. Michalski: Solid State Phenomena, Vol. 114 (2006) p.233.

Google Scholar

[16] A. Michalski, J. Jaroszewicz, M. Rosiński, D. Siemiaszko: Intermetallics, Vol. 14 (2006) p.603.

Google Scholar

[17] A. Michalski, J. Jaroszewicz, M. Rosiński: Int. J. Self-Propagation High-Temp. Synth., Vol. 12 (2003) p.237.

Google Scholar

[18] J. Jaroszewicz and A. Michalski: J. Europ. Ceram. Soc., Vol. 26 (2006) p.247.

Google Scholar

[19] A.S. Vishnevskii, V.G. Delevi: Sinteticheskie Almazy, Vol. 2 (1978) p.17.

Google Scholar