[1]
F. Baino and C. Vitale-Brovarone, Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future, Journal of Biomedical Materials Research Part A, 97A (2011) 514-535.
DOI: 10.1002/jbm.a.33072
Google Scholar
[2]
D. Lukito, J.M. Xue, and J. Wang, In vitro bioactivity assessment of 70 (Wt. )%SiO2-30 (wt. )%CaO bioactive glasses in simulated body fluid, Materials Letters, 59 (2005) 3267-3271.
DOI: 10.1016/j.matlet.2005.05.055
Google Scholar
[3]
A. Oyane, K. Onuma, A. Ito, H.M. Kim, T. KOKUBO, and T. NAKAMURA, Formation and growth of clusters in conventional and new kinds of simulated body fluids, Journal of Biomedical Materials Research Part A, 64A (2003) 339-348.
DOI: 10.1002/jbm.a.10426
Google Scholar
[4]
T. KOKUBO and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[5]
J. Ma, C.Z. Chen, D.G. Wang, X.G. Meng, and J.Z. Shi, Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO(2)-CaO-P(2)O(5) bioglass, Ceramics International, 36 (2010) 1911-(1916).
DOI: 10.1016/j.ceramint.2010.03.017
Google Scholar
[6]
J. Ma, C.Z. Chen, D.G. Wang, and J.H. Hu, Synthesis, characterization and in vitro bioactivity of magnesium-doped sol-gel glass and glass-ceramics, Ceramics International, 37 (2011) 1637-1644.
DOI: 10.1016/j.ceramint.2011.01.043
Google Scholar
[7]
L.L. Hench, The story of Bioglass (R), Journal of Materials Science-Materials in Medicine, 17 (2006) 967-978.
Google Scholar
[8]
A. Hoppe, N.S. Guldal, and A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32 (2011) 2757-2774.
DOI: 10.1016/j.biomaterials.2011.01.004
Google Scholar
[9]
J.C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, London (1994).
Google Scholar