[1]
Lam CXF, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials 2008; 3.
DOI: 10.1088/1748-6041/3/3/034108
Google Scholar
[2]
Kim HW. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. Journal of Biomedical Materials Research Part A 2007; 83A: 169.
DOI: 10.1002/jbm.a.31247
Google Scholar
[3]
Heo SJ, Kim SE, Wei J, Hyun YT, Yun HS, Kim DH, Shin JW. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research Part A 2009; 89A: 108.
DOI: 10.1002/jbm.a.31726
Google Scholar
[4]
Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science-Materials in Medicine 2005; 16: 899.
DOI: 10.1007/s10856-005-4424-1
Google Scholar
[5]
Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. Journal of Materials Science-Materials in Medicine 2002; 13: 529.
DOI: 10.1023/a:1015175108668
Google Scholar
[6]
Robinson JH, Best SM. Comparison of hydroxyapatite and AB-type carbonate-substituted hydroxyapatite suspensions for use in the reticulated foam method of scaffold production. Bioceramics 21 2009; 396-398: 649.
DOI: 10.4028/www.scientific.net/kem.396-398.649
Google Scholar
[7]
Robinson JH, Best SM, Ahmad Z, Edirisinghe MJ. The effect of reaction conditions on hydroxyapatite particle morphology and applications to the reticulated foam method of scaffold production. Bioceramics, Vol 20, Pts 1 and 2 2008; 361-363: 3.
Google Scholar
[8]
Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 2002; 23: 3063.
DOI: 10.1016/s0142-9612(01)00401-x
Google Scholar
[9]
Elzubair A, Elias CN, Suarez JCM, Lopes HP, Vieira MVB. The physical characterization of a thermoplastic polymer for endodontic obturation. Journal of Dentistry 2006; 34: 784.
DOI: 10.1016/j.jdent.2006.03.002
Google Scholar
[10]
Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials 2005; 26: 763.
DOI: 10.1016/j.biomaterials.2004.03.010
Google Scholar
[11]
Tsuji H, Suzuyoshi K, Tezuka Y, Ishida T. Environmental degradation of biodegradable polyesters: 3. Effects of alkali treatment on biodegradation of poly(epsilon-caprolactone) and poly (R)-3-hydroxybutyrate films in controlled soil. Journal of Polymers and the Environment 2003; 11: 57.
DOI: 10.1002/app.12781
Google Scholar
[12]
Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science 2003; 87: 1628.
DOI: 10.1002/app.11605
Google Scholar
[13]
Yeo A, Sju E, Rai B, Teoh SH. Customizing the Degradation and Load-Bearing Profile of 3D Polycaprolactone-Tricalcium Phosphate Scaffolds Under Enzymatic and Hydrolytic Conditions. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008; 87B: 562.
DOI: 10.1002/jbm.b.31145
Google Scholar
[14]
Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization. Journal of Biomedical Materials Research Part A 2010; 92A: 311.
DOI: 10.1002/jbm.a.32366
Google Scholar
[15]
Ang KC, Leong KF, Chua CK, Chandrasekaran M. Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Journal of Biomedical Materials Research Part A 2007; 80A: 655.
DOI: 10.1002/jbm.a.30996
Google Scholar
[16]
Htay M. Water vapour transmission and degradation properties of biaxiallt stretched PCL films and cell-permeable membranes. Division of Bioengineering, vol. Master of Engineering, (2004).
Google Scholar
[17]
Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J. In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 2002; 23: 2143.
DOI: 10.1016/s0142-9612(01)00345-3
Google Scholar
[18]
Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-epsilon-caprolactone) composites. Biomaterials 2004; 25: 5979.
DOI: 10.1016/j.biomaterials.2004.02.001
Google Scholar
[19]
Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical Materials Research 2002; 59: 697.
DOI: 10.1002/jbm.10044
Google Scholar