[1]
S. Froum S, S.C. Cho, E. Rosenberg, M. Rohrer and D. Tarnow. Histological Comparison of healing extraction sockets implanted with bioactive glass or demineralized freeze-dried boné allograft: A pilot study. J. Periodontol. 73(2002) pp.94-102.
DOI: 10.1902/jop.2002.73.1.94
Google Scholar
[2]
K. Eid, S. Zelicof, B.P. Perona, C.B. Sledge and J. Glowacki. Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation. J. Orthop. Res. 19 (2001).
DOI: 10.1016/s0736-0266(00)00080-2
Google Scholar
[3]
A.I. Pearce, R.G. Richards, S. Milz, E. Schneider and S.G. Pearce. Animal models for implant biomaterial research in bone: a review. Eur. Cell Mater. 2 (2007) pp.1-10.
DOI: 10.22203/ecm.v013a01
Google Scholar
[4]
E. Fernández, F.J. Gil, M.P. Ginebra, F.C. Driessens, J.A. Planell and S.M. Best. Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions. J Mater Sci Mater med 10 (1999) pp.177-183.
DOI: 10.1142/9789814291064_0125
Google Scholar
[5]
H. Saijo, U.I. Chung, K. Igawa, Y. Mori, D. Chikazu, M. Iino and T. Takato. Clinical application of artificial bone in the maxillofacial region. J Artif Organs 11 (2008) pp.171-176.
DOI: 10.1007/s10047-008-0425-4
Google Scholar
[6]
G.V.O. Fernandes, M. Calasans-Maia, F.F. Mitri, V.G. Bernardo, A. Rossi, G.D.S. Almeida and J.M. Granjeiro. Key Eng. Mat. 396-398 (2009) pp.15-18.
DOI: 10.4028/www.scientific.net/kem.396-398.15
Google Scholar
[7]
Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto and Y. Iwayama. Sintered carbonate apatites as bioresorbable bone substitutes. J. Biomed. Mater. Res. 15 (1998) pp.603-10.
DOI: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7
Google Scholar
[8]
R.Z. LeGeros. Calcium phosphates in oral biology. Basel: Karger. (1991).
Google Scholar
[9]
M. Hasegawa, Y. Doi and A. Uchida. Cell-mediated bioresorption of sintered carbonate apatite in rabbits. J. Bone Joint. Surg. Br. 85 (2003) pp.142-147.
DOI: 10.1302/0301-620x.85b1.13414
Google Scholar
[10]
R.Z. LeGeros. Calcium Phosphate-Based Osteoinductive Materials. Chem. Rev. 108 (2008) p.4742–4753.
DOI: 10.1021/cr800427g
Google Scholar
[11]
A. Matsuura, T. Kubo, K. Doi, K. Hayashi, K. Morita, R. Yokota, H. Hayashi, I. Hirata, M. Okazaki and Y Akagawa. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent. Mater. J. 28 (2009).
DOI: 10.4012/dmj.28.234
Google Scholar
[12]
F. Daitou, M. Maruta, G. Kawachi, K. Tsuru, S. Matsuya, Y. Terada and K. Ishikawa. Fabrication of carbonate apatite block based on internal dissolutionprecipitation reaction of dicalcium phosphate and calcium carbonate. Dental Mat. J. 29 (2010).
DOI: 10.4012/dmj.2009-095
Google Scholar
[13]
M.L. Nevins, M. Camelo, M. Nevins, C.J. King, R.J. Oringer, R.K. Schenk and J.P. Fiorellini. Human histologic evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int. J. Periodontics Restorative Dent. 20 (2000).
Google Scholar
[14]
T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Kusunose, T. Toyonaga, Y. Hamada and J. Takahashi. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials. 25 (2004) pp.3807-3812.
DOI: 10.1016/j.biomaterials.2003.10.081
Google Scholar
[15]
L. Guo, M. Huang and X. Zhang. Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method. J. Mater. Sci. Mater. Med. 14 (2003) pp.817-822.
Google Scholar