[1]
Tsai WC, Liao CJ, Wu CT, Liu CY, Lin SC, Young TH, Wu SS, Liu HC. Clinical result of sintered bovine hydroxyapatite bone substitute: analysis of the interface reaction between tissue and bone substitute. J Orthop Sci. 15 (2010) pp.223-32.
DOI: 10.1007/s00776-009-1441-9
Google Scholar
[2]
Cestari TM, Granjeiro JM, Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implan Res 20 (2009) pp.340-350.
DOI: 10.1111/j.1600-0501.2008.01659.x
Google Scholar
[3]
Keiichi K, Mitsunobu K, Masafumi S, Yutaka D, Toshiaki S. Induction of new bone by bFGF-loaded porous carbonate apatite implants in femur defects in rats. Clin. Oral Impl. Res. 20, 2009; p.560–565.
DOI: 10.1111/j.1600-0501.2008.01676.x
Google Scholar
[4]
Kasai T, Sato k, Kanematsu Y, Shikimori M, Kanematsu N, Doi Y. Bone Tissue Engineering Using Porous Carbonate Apatite and Bone Marrow Cells. The Journal of Craniofacial Surgery & Volume 21(2010) pp.473-478.
DOI: 10.1097/scs.0b013e3181cfea6d
Google Scholar
[5]
Calasans-Maia MD, Rossi AM, Dias EP, Santos SRA, Áscoli1 FO and Granjeiro JM. Stimulatory Effect on Osseous Repair of Zinc-substituted Hydroxyapatite: Histological Study in Rabbit's Tibia. Key Eng Mater 361-363 (2008) pp.1269-1272.
DOI: 10.4028/www.scientific.net/kem.361-363.1269
Google Scholar
[6]
Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science: Materials in Medicine 16 (2005) p.899–907.
DOI: 10.1007/s10856-005-4424-1
Google Scholar
[7]
J. V. Rau, S. N. Cesaro, D. Ferro, S. M. Barinov and J. V. Fadeeva. FTIR Study of Carbonate Loss from Carbon-ated Apatites in Wide Temperature Range. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71 (2004) pp.441-447.
DOI: 10.1002/jbm.b.30111
Google Scholar
[8]
Landi E, Tampieri A, Celotti G, Langenati R, San-dri M, Sprio S. Influence of Synthesis and Sintering Parameters on the Characteristics of Calcium Phosphate. Biomaterials 26 (2005) p.2835.
DOI: 10.1016/j.biomaterials.2004.08.010
Google Scholar
[9]
Landia E, Celottia G, Logroscinob G, Tampieria G. Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society 23 (2003) p.2931–2937.
DOI: 10.1016/s0955-2219(03)00304-2
Google Scholar
[10]
LeGeros RZ. Calcium Phosphate-Based Osteoinductive Materials. Chem. Rev. 108 (2008) p.4742–4753.
DOI: 10.1021/cr800427g
Google Scholar
[11]
Munar ML, Udoh K, Ishikawa K, Matsuya S, Nakagawa M. Effects of sintering temperature over 1, 300 ºC on the physical and compositional properties of porous hydroxyapatite foam. Dent Mater J. 25(2006) pp.51-58.
DOI: 10.4012/dmj.25.51
Google Scholar
[12]
Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF. Mechanochemical-Hydrothermal Synthesis of Carbonated Apatite Powders at Room Tem-perature. Biomaterials 23 (2002) pp.699-710.
DOI: 10.1016/s0142-9612(01)00158-2
Google Scholar
[13]
Redey SA, Nardin M, Assolant DA, Rey C, De-lannoy P, Sedel L, Marie PJ. Behavior of Human Osteoblastic Cells on Stoichiometric Hydroxyapatite and Type-A Carbonated Apatite. Journal of Biomedical Materials Research 50 (2000) p.353.
DOI: 10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c
Google Scholar
[14]
Barralet JE, Aldred S, Wright AJ, Coombes AGA. In Vitro Behavior of Albumin Loaded Car-bonated Hydroxyapatite Gel. Journal of Biomedical Materials Research. 60 (2002) pp.360-367.
DOI: 10.1002/jbm.10070
Google Scholar
[15]
Matsumoto T, Okazaki M, Inoue M, Ode S, Chien CC, Nakao H, Hamada Y, Takahashi J, Biodegradation of Carbonate Apatite/Collagen Composite Membrane and Its Controlled Release Carbonate Apatite. Journal of Biomedical Materials Research 60 (2002).
DOI: 10.1002/jbm.10133
Google Scholar
[16]
Barralet JE, Best SM, Bonfield W. Effect of Sintering Parameters on the Density and Microstructure of Carbonate Hydroxyapatite. Journal of Materials Science: Materials in Medicine, 11 (2000) pp.719-724.
DOI: 10.1023/a:1008975812793
Google Scholar
[17]
Ana ID, Matsuya S, Ishikawa K. Engineering of Carbonate Apatite Bone Substitute Based on Composition-Transformation of Gypsum and Calcium Hydroxide. Engineering 2 (2010) pp.344-352.
DOI: 10.4236/eng.2010.25045
Google Scholar
[18]
Habibovic P, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk CA. Comparison of two carbonated apatite ceramics in vivo. Acta Biomaterialia 6 (2010) p.2219–2226.
DOI: 10.1016/j.actbio.2009.11.028
Google Scholar
[19]
Glazer PA, In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J 1(2001) p.395–401.
DOI: 10.1016/s1529-9430(01)00108-5
Google Scholar
[20]
Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 2002; 59(4): p.697–708.
DOI: 10.1002/jbm.10044
Google Scholar
[21]
Ellies LG, Nelson DG, Featherstone JD. Crystallographic structure and surface morphology of sintered carbonated apatites. J Biomed Mater Res 22 (1988) p.541–553.
DOI: 10.1002/jbm.820220609
Google Scholar
[22]
Barrere F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B 67 (2003) p.655–65.
DOI: 10.1002/jbm.b.10057
Google Scholar
[23]
Siebers MC et al. In vivo evaluation of the trabecular bone behaviour to porous electrostatic spray deposition-derived calcium phosphate coatings. Clin Oral Implants Res 18 (2007) p.354–61.
DOI: 10.1111/j.1600-0501.2006.01314.x
Google Scholar
[24]
Frankenburg EP et al. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80 (1998) p.1112–1124.
Google Scholar
[30]
Mathur KK, Tatum SA, Kellman RM. Carbonated apatite and hydroxyapatite in craniofacial reconstruction. Arch Facial Plast Surg 5 (2003) p.379–83.
DOI: 10.1001/archfaci.5.5.379
Google Scholar