Osseoinduction Evaluation of Hydroxyapatite and Zinc Containing Hydroxyapatite Granules in Rabbits

Article Preview

Abstract:

This study investigated the osteoinductive potential of granules of stoichiometric hydroxyapatite (HA) and 0.5% zinc containing hydroxyapatite (ZnHA) in intramuscular (IM) site of rabbit’s abdomen. The biomaterials were both used in granular form, with 75% porosity and particle diameter between 450 and 500μm, sintered at 1100°C. Both materials performed adequately on a multiparametric in vitro cytocompatibility assay, indicating their suitability for in vivo testing. After approval by the Ethics Commission on Teaching and Research in Animals, fifteen rabbits were submitted to general anesthesia, incision and tissue dilatation, and a small site was created for HA (right incision) and ZnHA (left incision) intramuscular implantation. The animals were killed after 2, 4 and 12 weeks for biomaterials and surrounding tissues removal. Histological analysis after 2 weeks revealed the presence of granulation tissue surrounding biomaterials with multinucleated giant cells and no newly formed bone for both materials. After 4 weeks there was fibrous tissue involving the material and few inflammatory cells. Following 12 weeks it was observed the presence of connective tissue surrounding the biomaterial, cellularized enough for the two experimental groups, but it was not observed the presence of bone matrix associated with the biomaterials. We conclude that both biomaterials are cytocompatible and did not present the property of osseoinduction after 12 weeks of implantation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

252-257

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma 24 (2010) pp.36-40.

DOI: 10.1097/bot.0b013e3181cec4a1

Google Scholar

[2] Reichert JC, Epari DR, Wullschleger ME, saifgadeh S, Steck R, Lienau J, Sommerville S, Dickinson IC, Schutz MA, Duda GN, Hutmacher DW. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev 16 (2010).

DOI: 10.1089/ten.teb.2009.0455

Google Scholar

[3] Calasans-Maia MD, Ascoli FO, Rossi AM, Granjeiro JM. Avaliação histológica comparativa de reparo ósseo em tíbia de coelho tratada com xenoenxertos. Acta Ortop. Bras. 17 (2009) 340-343.

DOI: 10.1590/s1413-78522009000600005

Google Scholar

[4] Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite Biomaterials 30 (2009) p.2864–2872.

DOI: 10.1016/j.biomaterials.2009.01.043

Google Scholar

[5] Matsunaga K, Murata H, Mizoguchi T, Nakahira A. Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater 6(2010) pp.2289-93.

DOI: 10.1016/j.actbio.2009.11.029

Google Scholar

[6] Webster T J, Massa-Schlueter E, Smith J L, Slamovich E B. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 25(2004) 2111-2121.

DOI: 10.1016/j.biomaterials.2003.09.001

Google Scholar

[7] Salgueiro MJ, Zubillaga M, Lysionek A, Cremaschi G, Goldman CG, Caro R, De Paoli T, Hager A, Weill R, Boccio J. Zinc status and immune system relationship: a review. Biol Trace Elem Res. 76 (2000) pp.193-205.

DOI: 10.1385/bter:76:3:193

Google Scholar

[8] Calasans-Maia MD, Fernandes GVO, Rossi AM, Dias EP, Almeida GDS, Mitri FF and Granjeiro JM. Effect of Hydroxyapatite and Zinc-containing Hydroxyapatite on Osseous Repair of Critical Size Defect in the Rat Calvaria. Key Eng Mater 361-363 (2008).

DOI: 10.4028/www.scientific.net/kem.361-363.1273

Google Scholar

[9] Calasans-Maia MD, Rossi AM, Dias EP, Santos SRA, Áscoli1 FO and Granjeiro JM. Stimulatory Effect on Osseous Repair of Zinc-substituted Hydroxyapatite: Histological Study in Rabbit's Tibia. Key Eng Mater 361-363 (2008) pp.1269-1272.

DOI: 10.4028/www.scientific.net/kem.361-363.1269

Google Scholar

[10] ISO 10993-5, Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: In vitro methods, International Organization for Standardization, Geneva (1999).

Google Scholar

[11] De Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM. Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endodont 35(2009) pp.1387-90.

DOI: 10.1016/j.joen.2009.06.022

Google Scholar

[12] Yamasaki H. Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs. Jpn J Oral Biol 32 (1990) pp.190-192.

DOI: 10.2330/joralbiosci1965.32.190

Google Scholar

[13] Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17 (1996) pp.31-35.

DOI: 10.1016/0142-9612(96)80752-6

Google Scholar

[14] Ripamonti U, Crooks J, Kirkbride AN. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation. S Afr J Sci 95 (1999) pp.335-43.

Google Scholar

[15] Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20 (1999) pp.1799-1806.

DOI: 10.1016/s0142-9612(99)00075-7

Google Scholar

[16] Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29 (2008) pp.1177-1188.

DOI: 10.1016/j.biomaterials.2007.11.034

Google Scholar

[17] Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36 (2005) pp.1086-1093.

DOI: 10.1016/j.bone.2005.02.017

Google Scholar

[18] Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J Orthop Res 24 (2006) pp.867-876.

DOI: 10.1002/jor.20115

Google Scholar

[19] Kondo N, Ogose A, Tokunaga K, Umezu H, Arai K, Kudo N, Hoshino M, Inoue H, Irie H, Kuroda K, Mera H, Endo N. Osteoinduction with highly purified betatricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 27 ( 2006) pp.4419-4427.

DOI: 10.1016/j.biomaterials.2006.04.016

Google Scholar

[20] de Bruijn JD, Shankar K, Yuan H, Habibovic P (2008) Osteoinduction and its evaluation. In: Bioceramics and their Clinical Applications (T Kokubo, ed), Woodhead Publishing, CRC Press, Boca Raton, FL, pp.199-219.

DOI: 10.1533/9781845694227.1.199

Google Scholar

[21] Götz W, Lenz S, Reichert C, Henkel KO, Bienengräber V, Pernicka L, Gundlach KK, Gredes T, Gerber T, Gedrange T, Heinemann F. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol. 48(2010).

DOI: 10.2478/v10042-010-0096-x

Google Scholar

[22] Barbieri D, Renard AJS, de Bruijn JD, Yuan H. Heterotopic bone formation by nan-apatite containing poly(D, LLactide) composites. European Cells and Materials 19 (2010) pp.252-261.

DOI: 10.22203/ecm.v019a24

Google Scholar

[23] Hing KA, Annaz B, Saeed S, Revell PA, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med. 16 (2005) pp.467-75.

DOI: 10.1007/s10856-005-6988-1

Google Scholar

[24] Eid K, Zelicof S, Perone B P. Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopics sites in rats: discrimination of Osseoinduction, osseocompatibility and inflammation. Journal of Orthopaedic Research 19 (2001).

DOI: 10.1016/s0736-0266(00)00080-2

Google Scholar

[25] Yuan H, Kurashina K, Bruijn J D et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20 (1999) pp.1799-1806.

DOI: 10.1016/s0142-9612(99)00075-7

Google Scholar

[26] Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 12(2006) pp.1607-15.

DOI: 10.1089/ten.2006.12.1607

Google Scholar

[27] Le Nihouannen D, Saffarzadeh A, Gauthier O, Moreau F, Pilet P, Spaethe R, Layrolle P, Daculsi G. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J Mater Sci Mater Med. 19 (2008).

DOI: 10.1007/s10856-007-3206-3

Google Scholar

[28] Miao S, Cheng K, Weng W, Du P, Shen G, Han G, Yan W, Zhang S. Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta Biomaterialia 4 (2008) p.441–446.

DOI: 10.1016/j.actbio.2007.08.013

Google Scholar

[29] Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39 (1998) p.331–40.

DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e

Google Scholar