Pore Morphology in MAO Produced Oxide Film Modified by Magnesium Integration

Article Preview

Abstract:

Ti6Al4V alloy commonly used in human body for load bearing prosthesis was coated by micro arc oxidation (MAO) with magnesium rich TiO2 oxide. Since the presence of magnesium in bone tissues is known to promote bone formation and proliferation in physiological environment, its integration with TiO2 on implant surface could bring about a bioactivity for a fast bone formation and proliferation. The formation of a composite layer consisting of Mg integrated TiO2 by MAO process was carried out in an electrolyte with different magnesium content. The characterization studies of these coatings were performed by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) coupled with EDS analysis and XP2 surface profilometry.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

539-544

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. -L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y. -L. Zhou, R. Yang and A. Suzuki, Aging response of the Young's modulus and mechanical properties of Ti-29Nb-13Ta-4. 6Zr for biomedical applicationsMet. Mater. Trans. A 34A, (2003) pp.1007-1012.

DOI: 10.1007/s11661-003-0230-x

Google Scholar

[2] C. J. Boehlert, C. J. Cowen, C. R. Jaeger, M. Niinomi, T. Akahori, Tensile and fatigue evaluation of Ti-15Al-33Nb (at. %) and Ti-21Al-29Nb (at. %) alloys for biomedical applications Mater. Sci. Eng. C, vol. 25, (2005) pp.263-275.

DOI: 10.1016/j.msec.2004.12.011

Google Scholar

[3] B. D. Ratner, New ideas in biomaterials science-a path to engineered biomaterials J. Biomed. Mater. Res. 27, (1993) p.837.

DOI: 10.1002/jbm.820270702

Google Scholar

[4] M. S. Block, I. M. Finger, M. G. Fontenot, J. N. Kent, Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs Int. J. Oral Maxillofac. Implants 4, (1989) p.219.

Google Scholar

[5] A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M. D. McKee, Chemical modification of titanium surfaces for covalent attachment of biological molecules, J. Biomed. Mater. Res. 40, (1998) p.324.

DOI: 10.1002/(sici)1097-4636(199805)40:2<324::aid-jbm18>3.0.co;2-l

Google Scholar

[6] W. Xue, B. Vamsi Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia, 3 (2007) pp.1007-1018.

DOI: 10.1016/j.actbio.2007.05.009

Google Scholar

[7] L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, J. Y. Koak, Improved biological performance of Ti implants due to surface modification by microarc oxidation, Biomaterials 25, (2004) pp.2867-2875.

DOI: 10.1016/j.biomaterials.2003.09.048

Google Scholar

[8] W. W. Son, X. Zhu, H. I. Shin, J. L. Ong, K. H. Kim, In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res B 66, (2003) p.520.

DOI: 10.1002/jbm.b.10042

Google Scholar

[9] Y. -T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24 (2003) pp.3893-3907.

DOI: 10.1016/s0142-9612(03)00261-8

Google Scholar

[10] R. Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Sciences. KargerBasel, Switzerland, Basel, (1991) p.108.

Google Scholar

[11] K. Lilley, U. Gbureck, J. Knowles, D. Farrar, J. Barralet, Cement from magnesium substituted hydroxyapatite. J. Mater. Sci.: Mater. Med., 16, (2005) pp.455-460.

DOI: 10.1007/s10856-005-6986-3

Google Scholar

[12] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, K. S. Ten Huisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials, 25, (2004) pp.4647-4657.

DOI: 10.1016/j.biomaterials.2003.12.008

Google Scholar

[13] E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour, J Mater Sci: Mater Med, 19, (2008) pp.239-247.

DOI: 10.1007/s10856-006-0032-y

Google Scholar

[14] Z. Yang, Y. Jiang, L. X. Yu, B. Wen, F. Li, S. Sun, T. Hou, Preparation and characterization of magnesium doped hydroxyapatite-gelatin nanocomposite, J. Mater. Chem., 15, (2005) pp.1807-1811.

DOI: 10.1039/b418015c

Google Scholar

[15] M-J. Jiao, X-X. Wang, Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate, Materials Letters, 63, (2009) pp.2286-2289.

DOI: 10.1016/j.matlet.2009.07.048

Google Scholar

[16] Y. -T. Sul, C. Johansson, E. Byon, T. Albrektsson, The bone response of oxidized bioactive and non-bioactive titanium implants, Biomaterials, 26, (2005) pp.6720-6730.

DOI: 10.1016/j.biomaterials.2005.04.058

Google Scholar