[1]
Y. -L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y. -L. Zhou, R. Yang and A. Suzuki, Aging response of the Young's modulus and mechanical properties of Ti-29Nb-13Ta-4. 6Zr for biomedical applicationsMet. Mater. Trans. A 34A, (2003) pp.1007-1012.
DOI: 10.1007/s11661-003-0230-x
Google Scholar
[2]
C. J. Boehlert, C. J. Cowen, C. R. Jaeger, M. Niinomi, T. Akahori, Tensile and fatigue evaluation of Ti-15Al-33Nb (at. %) and Ti-21Al-29Nb (at. %) alloys for biomedical applications Mater. Sci. Eng. C, vol. 25, (2005) pp.263-275.
DOI: 10.1016/j.msec.2004.12.011
Google Scholar
[3]
B. D. Ratner, New ideas in biomaterials science-a path to engineered biomaterials J. Biomed. Mater. Res. 27, (1993) p.837.
DOI: 10.1002/jbm.820270702
Google Scholar
[4]
M. S. Block, I. M. Finger, M. G. Fontenot, J. N. Kent, Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs Int. J. Oral Maxillofac. Implants 4, (1989) p.219.
Google Scholar
[5]
A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M. D. McKee, Chemical modification of titanium surfaces for covalent attachment of biological molecules, J. Biomed. Mater. Res. 40, (1998) p.324.
DOI: 10.1002/(sici)1097-4636(199805)40:2<324::aid-jbm18>3.0.co;2-l
Google Scholar
[6]
W. Xue, B. Vamsi Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia, 3 (2007) pp.1007-1018.
DOI: 10.1016/j.actbio.2007.05.009
Google Scholar
[7]
L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, J. Y. Koak, Improved biological performance of Ti implants due to surface modification by microarc oxidation, Biomaterials 25, (2004) pp.2867-2875.
DOI: 10.1016/j.biomaterials.2003.09.048
Google Scholar
[8]
W. W. Son, X. Zhu, H. I. Shin, J. L. Ong, K. H. Kim, In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res B 66, (2003) p.520.
DOI: 10.1002/jbm.b.10042
Google Scholar
[9]
Y. -T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24 (2003) pp.3893-3907.
DOI: 10.1016/s0142-9612(03)00261-8
Google Scholar
[10]
R. Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Sciences. KargerBasel, Switzerland, Basel, (1991) p.108.
Google Scholar
[11]
K. Lilley, U. Gbureck, J. Knowles, D. Farrar, J. Barralet, Cement from magnesium substituted hydroxyapatite. J. Mater. Sci.: Mater. Med., 16, (2005) pp.455-460.
DOI: 10.1007/s10856-005-6986-3
Google Scholar
[12]
W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, K. S. Ten Huisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials, 25, (2004) pp.4647-4657.
DOI: 10.1016/j.biomaterials.2003.12.008
Google Scholar
[13]
E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour, J Mater Sci: Mater Med, 19, (2008) pp.239-247.
DOI: 10.1007/s10856-006-0032-y
Google Scholar
[14]
Z. Yang, Y. Jiang, L. X. Yu, B. Wen, F. Li, S. Sun, T. Hou, Preparation and characterization of magnesium doped hydroxyapatite-gelatin nanocomposite, J. Mater. Chem., 15, (2005) pp.1807-1811.
DOI: 10.1039/b418015c
Google Scholar
[15]
M-J. Jiao, X-X. Wang, Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate, Materials Letters, 63, (2009) pp.2286-2289.
DOI: 10.1016/j.matlet.2009.07.048
Google Scholar
[16]
Y. -T. Sul, C. Johansson, E. Byon, T. Albrektsson, The bone response of oxidized bioactive and non-bioactive titanium implants, Biomaterials, 26, (2005) pp.6720-6730.
DOI: 10.1016/j.biomaterials.2005.04.058
Google Scholar