[1]
C.J. Damien, J. R. Parsons, Bone graft and bone substitutes: a review of current technology and applications, J . Appl Biomater. 2 (1991) 187-208.
DOI: 10.1002/jab.770020307
Google Scholar
[2]
R. Murugan, S. Ramakrishana. In: H.S. nalwa, editor. Handbook of nanostructured biomaterials and their applications in nanobiotechnology. California: American Scientific Publishers. (2005) 141-68.
Google Scholar
[3]
R. D. Welch, H. Zhang , D. G. Bronson. Experimental tribial plateau fractures augmented with phosphate cement or autologous bone graft. J Bone Joint Surg Am. 85 (2003) 222-231.
DOI: 10.2106/00004623-200302000-00007
Google Scholar
[4]
Myerson MS, Neufeld SK, Uribe J. Fresh- frozen structural allografts in the food and ankle. J Bone Joint Surg Am 2005; 87: 113-20.
DOI: 10.2106/jbjs.c.01735
Google Scholar
[5]
X. D Li, Y. Y. Hu. The treatment of osteomyelitis with gentamicinr econstituted bone xenograft-composite. J Bone Surg Br. 83 (2001) 1063-1068.
Google Scholar
[6]
T. J. Cypher, J. P. Grossman. Biological principles of bone graft healing. J Foot Ankle Surg. 35 (1996) 413-417.
DOI: 10.1016/s1067-2516(96)80061-5
Google Scholar
[7]
L. Holliday. Composite materials, Elsevier, New York, (1996).
Google Scholar
[8]
Sudhir K. Gupta, P.V. R. Rao, G. George and T.S.B. Narasaraju, Determination of Solubility Products of Phosphate and Vanadate Apatites of Calcium and Their Solid Solutions. J. Mater, Sic. 22 (1987) 1285-1290.
DOI: 10.1007/bf01233122
Google Scholar
[9]
K. de Groot. Bioceramics Cnsisting of Calcium Phosphate Salts. Biomaterials. 9 (1980) 47-50.
DOI: 10.1016/0142-9612(80)90059-9
Google Scholar
[10]
R. A. Young and D. W. Holcomb. Variability of Hydroxyapatite Preparations. Calcif. Tiss. Res. 34 (1982) 397-332.
Google Scholar
[11]
M. Akao, H. Aoki, K. Kato and A. Sato. Dense Polycystqllin β-Tricalcium Phosphate For Prosthetic Applicatins. J. Mater. Sic. 17 (1982) 343-6.
DOI: 10.1007/bf00591468
Google Scholar
[12]
M. Hafezi-Ardakani, F. Moztarzadeh, M. Rabiee, A. Reza. Talebi, Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via sol–gel method. Ceramics International 37 (2011) 175–180.
DOI: 10.1016/j.ceramint.2010.08.034
Google Scholar
[13]
M. Hafezi-Ardakania, F. Moztarzadeha, M. Rabiee , A. Reza. Talebib, M. Abasi-shahni, F. Fesahatb and F. Sadeghianb, Sol-gel synthesis and apatite-formation ability of nanostructure merwinite (Ca3MgSi2O8) as a novel bioceramic. J. Ceramic Processing Research. 11 (2010).
Google Scholar
[14]
J. Ou, Y. Kang , Z. Huang, X. Chen, J. Wu, R. Xiao and G. Yin. Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed. Mater. 3 (2008) 1-8.
DOI: 10.1088/1748-6041/3/1/015015
Google Scholar
[15]
T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. J. Yamamuro. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24 (1990) 721–734.
DOI: 10.1002/jbm.820240607
Google Scholar
[16]
T. Kokubo and H. Takadama . How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27 (2006) 2907–2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar