Aerosol Optical Thickness Retrieval Based on Hj-Ccd Supported by Modis Surface Reflectance Production

Article Preview

Abstract:

For lack of short-wavelength-IR bands near 2.1μm, the operational capabilities of HJ-1A/B CCD in monitoring aerosols are limited overwhelmingly. To solve this problem, a new algorithm, using MODIS surface reflectance production (MOD09) to support HJ-1A/B CCD aerosol retrieval, is proposed. A model of determining HJ-1 A/B CCD surface reflectance at blue band using MODIS surface reflectance data based on the kernel-based BRDF model is proposed. Six different HJ-1A/B CCD images, which have a high-quality and cover almost all the areas in Beijing, are used to test the new method. The retrieved values are compared with the API of Beijing city. Both of them have a similar variation trend. Implementation of the algorithm has a great significance in promoting the operational running of monitoring aerosol

You might also be interested in these eBooks

Info:

Periodical:

Pages:

843-847

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Kokhanovsky, F.M. Breon, A. Cacciari, et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research 85(2007) 372-394.

DOI: 10.1016/j.atmosres.2007.02.008

Google Scholar

[2] A. H. Strahler, J. P. Muller, MODIS Science Team Members. MODIS BRDF/ Albedo Product: Algorithm Theoretical Basis Document Version 5. 0. MODIS Product ID: MOD43, (1999).

Google Scholar

[3] Al-Saadi J., J. Szykman, R. B. Pierce, et al. 2005 : Improving National Air Quality Forecasts with Satellite Aerosol Observations. Bull. Am. Met. Soc., 86(9), 1249-1261.

DOI: 10.1175/bams-86-9-1249

Google Scholar

[4] Christina N. Hsu, Si-Chee Tsay, Michael D. King, et al. Aerosol Properties Over Bright-Reflecting Source Regions. IEEE Transaction on Geo-science and Remote Sensing, VOL. 42, NO. 3, 2004, 557-569.

DOI: 10.1109/tgrs.2004.824067

Google Scholar

[5] Crystal B. Schaaf, Feng Gao, Alan H. Strahler, et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 2002, 83: 135-148.

DOI: 10.1016/s0034-4257(02)00091-3

Google Scholar

[6] H. Bian, M. Chin, J. M. Rodriguez, et al. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmos. Chem. Phys., 9, 2375-2386, (2009).

DOI: 10.5194/acp-9-2375-2009

Google Scholar

[7] Holben B N, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data : Application for atmospheric correction. IEEE Trans. Geosci. Remote Sens, 1992, 30: 212-222.

DOI: 10.1109/36.134072

Google Scholar

[8] J. T. Houghton, Y. Ding, D. J. Griggs, et al. Intergovernmental Panel on Climate Change (IPCC) Climate Change 2001: The Scientific Basis. 2001. Cambridge University Press, UK. PP 944.

DOI: 10.1177/095968360301300516

Google Scholar

[9] Kaufman Y J, Wald A E, Remer L A., et al. The MODIS 2. 1-um channel –correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Trans. Geosci. Remote Sens., 1997b, 35(5): 1286-1298.

DOI: 10.1109/36.628795

Google Scholar

[10] Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[J]. Int. J. Remote Sensing, 1988, 9(8): 1357-1381.

DOI: 10.1080/01431168808954942

Google Scholar

[11] King M D, Kaufman Y J, Tanre D, et al. Remote sensing of troposphere aerosol from space : past, present, and future[J]. Bulletin of the American Meteorological Society, 1999, 80(11): 2229-2259.

DOI: 10.1175/1520-0477(1999)080<2229:rsotaf>2.0.co;2

Google Scholar