Solid-State Reaction and Gas Sensor Properties of Porous SnO2-In2O3 Composites

Article Preview

Abstract:

Mixtures of ITO and SnO2 powders were prepared by a solid-state reaction method in order to produce porous composite materials. X-ray diffraction, scanning electron microscope and gas sensing testing system have been used to analyze the microstructure and properties of it .It has been concluded that when the sintering temperature is 1573K,it has better gas-sensing properties. The pore structure and CO gas sensing property of porous SnO2-In2O3 composite materials can be improved with the increase of SnO2 contents.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1268-1272

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Korotcenkov, I. Boris, V. Brinzari, et al, Gas-sensing characteristics of one electrode gas sensors based on doped In2O3 ceramics, J. Sensors and Actuators B. 103 (2004) 13-22.

DOI: 10.1016/j.snb.2004.02.016

Google Scholar

[2] X. J. Liu, X. Q. Tan, S. Huan, Metal-oxide gas sensor, J. Journal of Guangzhou University (Natural Science Edition). 5 (2007) 42-46.

Google Scholar

[3] T. Wagner, T. Sauerwald, C. D. Kohl, et al, Gas sensor based on ordered mesoporous In2O3, J. Thin solid Films. 517 (2009) 6170-6175.

DOI: 10.1016/j.tsf.2009.04.013

Google Scholar

[4] J. H. Kim, S. H. Kim, S, Shiratori.Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor, J. Sensors and Actuators B. 102 (2004) 241-247.

DOI: 10.1016/j.snb.2004.04.026

Google Scholar

[5] G. S. Devi, T. Hyodo, Y. Shimizu, et al, Synthesis of mesoporous TiO2-based powders and their gas-sensing properties, J. Sensors and Actuators B.87 (2002) 112-119.

DOI: 10.1016/s0925-4005(02)00228-9

Google Scholar

[6] B. W. Licznerski, K. Nitsch, H. Teterycz, et al, Characterisation of electrical parameters for multiplayer SnO2 gas sensors, J. Sensors and Actuators B. 103 (2004) 69-75.

DOI: 10.1016/j.snb.2004.04.037

Google Scholar

[7] A. M. Ruiz, G. Sakai, A. Cornet, et al, Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors, J. Sensors and Actuators B. 103 (2004) 312-317.

DOI: 10.1016/j.snb.2004.04.061

Google Scholar

[8] S. M. Lee, Y. S. Lee, C. Shim H, et al, Three electrodes gas sensor based on ITO thin film, J. Sensors and Actuators B. 93 (2003) 31-35.

DOI: 10.1016/s0925-4005(03)00335-6

Google Scholar

[9] A. A. Firooz, A. R. Mahjoub, A. A. Khodadadi, Effects of flower-like, sheet-like and granular SnO2 nanostructures prepared by solid-state reactions on CO sensing, J. Materials Chemistry and Physics. 115 (2009) 196-199.

DOI: 10.1016/j.matchemphys.2008.11.028

Google Scholar

[10] J. Feng, X. R. Ren, X. Y. Wang, et al, Thermal conductivity of ytterbia-stabilized zirconia, J. Scripta Materialia. 66 (2012) 41–44.

DOI: 10.1016/j.scriptamat.2011.09.038

Google Scholar