Fabrication and Electrical Properties of Vanadium Pentoxide Fibres

Article Preview

Abstract:

In this work, orthorhombic vanadium pentoxide (V2O5) fibres have been prepared by electrospinning from a sol-gel precursor and the following calcination at 723 K. Structure, composition and morphology of the obtained V2O5 fibres are characterized. The Raman results show that the obtained V2O5 fibres don’t undergo a semiconductor-metal transition. And their high temperature electrical properties are discussed according to a thermally activated small-polaron hopping process.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1281-1285

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed. 46 (2007) 5670-5703.

DOI: 10.1002/anie.200604646

Google Scholar

[2] Z.C. Sun, E. Zussman, et al., Compound core-shell polymer nanofibers by co-elecrospinning, Adv. Mater. 15 (2003) 1929-1932.

DOI: 10.1002/adma.200305136

Google Scholar

[3] F. Li, Y. Zhao, et al., Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning, J. Appl. Polym. Sci. 112 (2009) 269-274.

DOI: 10.1002/app.29384

Google Scholar

[4] D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Lett. 4 (2004) 933-938.

DOI: 10.1021/nl049590f

Google Scholar

[5] G. Ma, D. Yang, et al., Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning, Polym. Adv. Technol. 20 (2009) 147-150.

DOI: 10.1002/pat.1180

Google Scholar

[6] R. Ostermann, D. Li, et al., V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination, Nano Lett. 6 (2006) 1297-1302.

DOI: 10.1021/nl060928a.s001

Google Scholar

[7] H. Wu, R. Zhang, et al., Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties, Chem. Mater. 19 (2007) 3506-3511.

DOI: 10.1021/cm070280i

Google Scholar

[8] H. Wu, D.D. Lin, et al., ZnO nanofiber field-effect transistor assembled by electrospinning, J. Am. Ceram. Soc. 91 (2008) 656-659.

DOI: 10.1111/j.1551-2916.2007.02162.x

Google Scholar

[9] R. Zhang, H. Wu, et al., Photocatalytic and magnetic properties of the Fe-TiO2/SnO2 nanofiber via electrospinning, J. Am. Ceram. Soc. 93 (2010) 605-608.

Google Scholar

[10] Ch. Karakotsou, J.A. Kalomiros, et al., Nonlinear electrical conductivity of V2O5 single crystals, Phys. Rev. B. 45 (1992) 11627-11631.

Google Scholar

[11] J. Muster, G.T. Kim, et al., Electrical transport through individual vanadium pentoxide nanowires, Adv. Mater. 12 (2000) 420-424.

DOI: 10.1002/(sici)1521-4095(200003)12:6<420::aid-adma420>3.0.co;2-7

Google Scholar

[12] C. Gomez-Navarro, P.J. Pablo, et al., Probing electrical transport in nanowires: current maps of individual V2O5 nanofibers with scanning force microscopy, Nanotechnology. 14 (2003) 134-137.

DOI: 10.1088/0957-4484/14/2/306

Google Scholar

[13] D.D. Lin, H. Wu, et al., Electrical behavior of electrospun heterostructured Ag-ZnO nanofibers, Appl. Phys. Lett. 95 (2009), 112104.

DOI: 10.1063/1.3227691

Google Scholar

[14] P. Viswanathamurthi, N. Bhattarai, et al., Vanadium pentoxide nanofibers by electrospinning, Scripta Mater. 49 (2003) 577-581.

DOI: 10.1016/s1359-6462(03)00333-6

Google Scholar

[15] L. Abello, E. Husson, et al., Vibrational spectra and valence force field of crystalline V2O5, Spectrochim. Acta A. 39 (1983) 641-651.

DOI: 10.1016/0584-8539(83)80040-3

Google Scholar

[16] G.S. Doerk, C. Carraro, et al., Temperature dependence of Raman spectra for individual silicon nanowires, Phys. Rev. B 80 (2009) 073306.

DOI: 10.1103/physrevb.80.073306

Google Scholar

[17] K. Honma, M. Yoshinaka, et al., Fabrication, microstructure and electrical conductivity of V2O5 ceramics mater. Res. Bull. 31 (1996) 531-537.

DOI: 10.1016/s0025-5408(96)00015-3

Google Scholar

[18] M. Atiqullah, M.N. Akhtar, et al., Surface chemistry of selected supported metallocene catalysts studied by DR-FTIR, CPMAS NMR, and XPS techniques, Surf. Interface Anal. 38 (2006) 1319-1327.

DOI: 10.1002/sia.2452

Google Scholar

[19] E.E. Chain, Optical properties of vanadium dioxide and vanadium pentoxide thin films, Appl. Optics. 30 (1991) 2782-2787.

DOI: 10.1364/ao.30.002782

Google Scholar

[20] N.F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids. 1 (1968) 1-17.

DOI: 10.1016/0022-3093(68)90002-1

Google Scholar