[1]
A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed. 46 (2007) 5670-5703.
DOI: 10.1002/anie.200604646
Google Scholar
[2]
Z.C. Sun, E. Zussman, et al., Compound core-shell polymer nanofibers by co-elecrospinning, Adv. Mater. 15 (2003) 1929-1932.
DOI: 10.1002/adma.200305136
Google Scholar
[3]
F. Li, Y. Zhao, et al., Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning, J. Appl. Polym. Sci. 112 (2009) 269-274.
DOI: 10.1002/app.29384
Google Scholar
[4]
D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Lett. 4 (2004) 933-938.
DOI: 10.1021/nl049590f
Google Scholar
[5]
G. Ma, D. Yang, et al., Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning, Polym. Adv. Technol. 20 (2009) 147-150.
DOI: 10.1002/pat.1180
Google Scholar
[6]
R. Ostermann, D. Li, et al., V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination, Nano Lett. 6 (2006) 1297-1302.
DOI: 10.1021/nl060928a.s001
Google Scholar
[7]
H. Wu, R. Zhang, et al., Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties, Chem. Mater. 19 (2007) 3506-3511.
DOI: 10.1021/cm070280i
Google Scholar
[8]
H. Wu, D.D. Lin, et al., ZnO nanofiber field-effect transistor assembled by electrospinning, J. Am. Ceram. Soc. 91 (2008) 656-659.
DOI: 10.1111/j.1551-2916.2007.02162.x
Google Scholar
[9]
R. Zhang, H. Wu, et al., Photocatalytic and magnetic properties of the Fe-TiO2/SnO2 nanofiber via electrospinning, J. Am. Ceram. Soc. 93 (2010) 605-608.
Google Scholar
[10]
Ch. Karakotsou, J.A. Kalomiros, et al., Nonlinear electrical conductivity of V2O5 single crystals, Phys. Rev. B. 45 (1992) 11627-11631.
Google Scholar
[11]
J. Muster, G.T. Kim, et al., Electrical transport through individual vanadium pentoxide nanowires, Adv. Mater. 12 (2000) 420-424.
DOI: 10.1002/(sici)1521-4095(200003)12:6<420::aid-adma420>3.0.co;2-7
Google Scholar
[12]
C. Gomez-Navarro, P.J. Pablo, et al., Probing electrical transport in nanowires: current maps of individual V2O5 nanofibers with scanning force microscopy, Nanotechnology. 14 (2003) 134-137.
DOI: 10.1088/0957-4484/14/2/306
Google Scholar
[13]
D.D. Lin, H. Wu, et al., Electrical behavior of electrospun heterostructured Ag-ZnO nanofibers, Appl. Phys. Lett. 95 (2009), 112104.
DOI: 10.1063/1.3227691
Google Scholar
[14]
P. Viswanathamurthi, N. Bhattarai, et al., Vanadium pentoxide nanofibers by electrospinning, Scripta Mater. 49 (2003) 577-581.
DOI: 10.1016/s1359-6462(03)00333-6
Google Scholar
[15]
L. Abello, E. Husson, et al., Vibrational spectra and valence force field of crystalline V2O5, Spectrochim. Acta A. 39 (1983) 641-651.
DOI: 10.1016/0584-8539(83)80040-3
Google Scholar
[16]
G.S. Doerk, C. Carraro, et al., Temperature dependence of Raman spectra for individual silicon nanowires, Phys. Rev. B 80 (2009) 073306.
DOI: 10.1103/physrevb.80.073306
Google Scholar
[17]
K. Honma, M. Yoshinaka, et al., Fabrication, microstructure and electrical conductivity of V2O5 ceramics mater. Res. Bull. 31 (1996) 531-537.
DOI: 10.1016/s0025-5408(96)00015-3
Google Scholar
[18]
M. Atiqullah, M.N. Akhtar, et al., Surface chemistry of selected supported metallocene catalysts studied by DR-FTIR, CPMAS NMR, and XPS techniques, Surf. Interface Anal. 38 (2006) 1319-1327.
DOI: 10.1002/sia.2452
Google Scholar
[19]
E.E. Chain, Optical properties of vanadium dioxide and vanadium pentoxide thin films, Appl. Optics. 30 (1991) 2782-2787.
DOI: 10.1364/ao.30.002782
Google Scholar
[20]
N.F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids. 1 (1968) 1-17.
DOI: 10.1016/0022-3093(68)90002-1
Google Scholar