Electrical Characteristics and Microstructures of Pr6O11-Doped Bi4Ti3O12 Ceramics

Article Preview

Abstract:

The electrical properties of Pr6O11-doped bismuth titanates (BixPryTi3O12, BPT) ceramics prepared by a conventional ceramic technique have been investigated. At applied d.c. field below 200V/mm, the current-voltage curve of Pr-doped samples exhibit negative differential resistance behavior. The conducting filamentary model has been used to explain the negative differential resistance phenomenon in Pr-doped bismuth titanates. The impedance spectrum indicates that Pr-doped sample consists of semiconducting grain and moderately insulating grain boundary regions. XRD, SEM and EPMA analyses reveal crystalline phase characterized by a Bi-layered perovskite structure of Bi4Ti3O12 and the distribution of every element is uniform. Pr-doped samples exhibit randomly oriented and plate-like morphology.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1313-1316

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Chon, K. Kim, H. M. Jang, et al. Fatigue-free samarium-modified bismuth titanate (Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations, Appl. Phys. Lett. 79 (2001) 3137-3139.

DOI: 10.1063/1.1415353

Google Scholar

[2] D. Wu, A. D. Li, T. Yu, et al. Polarization and electrical properties of Bi3.25Pr0.75Ti3O12 ferroelectric thin films, Appl. Phys. Lett. 78 (2004) 95-99.

Google Scholar

[3] J. F. Scott, C. A. P. De Araujo, Ferroelectric memories, Science, 246 (1998) 1400-1402.

Google Scholar

[4] C. A. P. De Araujo, J. D. Cuchiare, L. D. McMillan, et al. Fatigue-free ferroelectric capacitors, Nature, 374 (1995) 627-629.

DOI: 10.1038/374627a0

Google Scholar

[5] T. Kojima, T. Sakai, T. Watanabe, et al. Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 80 (2002) 2746-2748.

DOI: 10.1063/1.1468914

Google Scholar

[6] H. Matsuda, S. Ito, T. Iijima, Orientation behavior and ferro-piezoelectric properties of Bi4-xPrxTi3O12 polycrystalline films, Jpn. J. Appl. Phys. 42 (2003) 5977-5980.

DOI: 10.1143/jjap.42.5977

Google Scholar

[7] W. Wang, J. Zhu, X. Y. Mao, et al. Properties of Tunsten-doped Bi4Ti3O12-Sr Bi4Ti4O15 intergrouth ferroelectrics, Mater. Res. Bull. 42 (2007) 274-280.

Google Scholar

[8] H. S. Gu, A. X. Kuang, S. M. Wang, et al. Synthesis and ferroelectric properties of c-axies oriented Bi4Ti3O12 thin films by sol-gel process on platinum coated silicon, Appl. Phys. Lett. 68 (1996) 1209-1210.

DOI: 10.1063/1.115971

Google Scholar

[9] B. H. Park, B. S. Kang, S. D. Bu, et al. Fatigue-free ferroelectric capacitors, Nature, 401(1999) 682-685.

Google Scholar

[10] D. Wu, D. Li, N. B. Ming, Dielectric characterization of Bi3.25La0.75Ti3O12 thin films, Appl. Phys. Lett. 84 (2004) 4505-4507.

DOI: 10.1063/1.1757631

Google Scholar

[11] A. Z. Simoes, C. Quinelato, A. Ries, et al. Preparation of Lanthanum doped Bi4Ti3O12 eceramics by the polymeric precursor method, Mater. Chemistry and Phys. 98 (2006) 481-485.

DOI: 10.1016/j.matchemphys.2005.09.070

Google Scholar

[12] M. Chen, Y. Wang, Z. L. Liu, et al. Electrical Characteristics and Microstructures of Sm2O3-doped Bi4Ti3O12 Ceramics, Chin. Phys. Lett. 21 (2004) 1811-1814.

Google Scholar