[1]
T. Zeng, X.L. Dong, C.L. Mao, et al. Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics, J. Journal of the European Ceramic Society, 27 (2007) 2025-2029.
DOI: 10.1016/j.jeurceramsoc.2006.05.102
Google Scholar
[2]
S. V. Bobylev, N. F. Morozov, and I. A. Ovid'ko.Nucleation of Dislocations and the Growth of Nanosize Pores in Deformable Nanocrystalline Ceramics, J. Doklady Physics, 4 (2009) 174-177.
DOI: 10.1134/s1028335809040041
Google Scholar
[3]
G.M. Zhang, B.Q. Zhang. Discussion and analysis of ceramics pores formation reason under dry pressing molding, J. Vacuum electronic technology, 4 (2007) 85-86.
Google Scholar
[4]
D. Sen, A.K. Patra, S. Mazumder, et al. Pore morphology in sintered ZrO2-8 mol% Y2O3 ceramic: a small-angle neutron scattering investigation, J. Alloys and Compounds, 340 (2002) 236-241.
DOI: 10.1016/s0925-8388(02)00008-7
Google Scholar
[5]
J. Manara, R. Caps, F. Raether, et al. Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared, J. Optics Communications, 168 (1999) 237-250.
DOI: 10.1016/s0030-4018(99)00347-8
Google Scholar
[6]
J. L. Shi. Solid state sintering of ceramics: pore microstructure models, densification equations and applications, J. Journal of materials science, 34 (1999) 3801-3812.
Google Scholar
[7]
X.N. Jing, J.H. Zhao, L.H. He. 2-dimensional phase field model of grains and pores topology growth evolution process at later stage in solid-phase ceramic sintering, J. Mater Sci Eng, 2 (2003) 170-173.
Google Scholar
[8]
G. Tomandl, P. Varkoly. Three-dimensional computer modeling of grain growth and pore shrinkage during sintering, J. Materials Chemistry and Physics, 67 (2001) 12-16.
DOI: 10.1016/s0254-0584(00)00413-2
Google Scholar
[9]
H. H.Yu, Z. Suo. An axisymmetric model of pore-grain boundary separation, J. Journal of the Mechanics and Physics of Solids, 47 (1999) 1131-1155.
DOI: 10.1016/s0022-5096(98)00093-3
Google Scholar
[10]
J.L. Shi. solid-phase ceramic sintering-Ⅲ experiment:grains and pores growth in superfine zirconia sintering process and its densification behaviour, J. Chinese Ceramic Society, 1 (1998) 1-13.
Google Scholar
[11]
B.S. Bokstein, V.S. Gostomelskii, V.A. Ivanov. Kinetics of diffusion pores dissolving at intercrystalline boundary under coinfluence of compressive stresses and capillary forces, Materials Letters, 39 (1999) 77-79.
DOI: 10.1016/s0167-577x(98)00232-8
Google Scholar
[12]
M.G. Mynbaeva, D.A. Bauman, and K. D. Mynbaev. On the Role of Vacancies in Pore Formation in the Course of Anodizing of Silicon Carbide, J. Physics of the Solid State, 9 (2005) 1630–1636.
DOI: 10.1134/1.2045345
Google Scholar
[13]
K. Darcovich, K. Shinagawa, F. Walkowiak. A three-dimensional dual-mechanism model of pore stability in a sintering alumina structure, Materials Science and Engineering A, 373 (2004) 107-114.
DOI: 10.1016/j.msea.2003.12.037
Google Scholar
[14]
B.Y. Li, D.X. Zhou, S.L. Jiang, et al.TiO2 conductivity at high temperature and defect chemical analysis, J. piezoelectric and acousto-optic. 6 (2001) 473-477.
Google Scholar
[15]
S.X. Feng, B.H Li, Q.H. Jin. Experience calculation of point defect formation energy in rutile TiO2, J. Physica Journal, 7(2000) 1307-1311.
Google Scholar
[16]
S.L. Yang, J.M. Wu. Effects of Nb2O5 in (Ba,Bi,Nb)-added TiO2 ceramic raristors, J Mater Res, 2 (1995) 345-352.
Google Scholar
[17]
T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell. Defect chemistry and semiconducting properties of titanium dioxideII. Defect diagrams, J. Phys. Chem. Solids, 64 (2003) 1057-1067.
DOI: 10.1016/s0022-3697(02)00480-8
Google Scholar
[18]
V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, et al.. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides, J. Electron Spectroscopy and Related Phenomena, 152 (2006) 18-24.
DOI: 10.1016/j.elspec.2006.02.004
Google Scholar
[19]
Y.Tanaka, M.Nakai, T.Akahori. Characterization of air-formed surface oxide film on Ti-29Nb- 13Ta-4.6Zr alloy surface using XPS and AES, J. Corrosion Science, 50 (2008) 2111-2116.
DOI: 10.1016/j.corsci.2008.06.002
Google Scholar
[20]
P. Verardi, F. Craciun, L. Mirenghi, et al.. An XPS and XRD study of physical and chemical homogeneity of Pb_Zr,Ti/O thin films obtained by pulsed laser deposition, Appl. Surf. Sci. 138-139 (1999) 552-556.
DOI: 10.1016/s0169-4332(98)00577-7
Google Scholar