Enhanced Visible Light Activity of Ag-Loaded TiO2 Nanotube Arrays by AC Electrodeposition

Article Preview

Abstract:

In this work, highly-ordered TiO2 nanotube arrays were prepared by constant-voltage anodization, followed by electrodeposition of Ag to obtain Ag-loaded TiO2 (Ag-TiO2) nanotube arrays via alternating current (AC) process. The results of SEM and XRD show that the morphology and crystal structure of Ag-TiO2 layer depend greatly on the electrodeposition parameters. Ag-TiO2 nanotube arrays prepared in 2.5 mmol/L AgNO3 solution by electrodeposition with applied voltage of 12 V for 1 minute performed the best photoelectrochemical current response and photocatalystic activity. The photocurrent density of Ag-TiO2 is 43.32 μA/cm2 under sunlight irradiation (70 mW/cm2), which is 4.2 times as that of unloaded TiO2 nanotube arrays. Methyl orange (MO) degradation rate with the Ag-TiO2 nanotube arrays achieves 52.13% after 90 min sunlight irradiation which is obvious higher than that of TiO2 nanotube arrays. The mechanism of enhancing photoelectrochemical activity of decorating titania with Ag has also been discussed in the view of energy band theory.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1708-1712

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano. Lett. 6 (2006) 215-218.

DOI: 10.1021/nl052099j

Google Scholar

[2] K. Shankar, J. Bandara, M. Paulose, et al., Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor–antenna dye, Nano. Lett. 8 (2008) 1654-1659.

DOI: 10.1021/nl080421v

Google Scholar

[3] W. D. Wang, P. Serp, P. Kalck J. L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method, Appl Catal B 56 (2005) 305-312.

DOI: 10.1016/j.apcatb.2004.09.018

Google Scholar

[4] K. Shankar, G. K. Mor, H. E. Prakasam, et al., Highly–ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye–sensitized solar cells, Nanotechnology 18 (2007) 065707.

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[5] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes K. G. Ong, Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology 17 (2006) 398-402.

DOI: 10.1088/0957-4484/17/2/009

Google Scholar

[6] A. L. Linsebigler, G. Lu, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results, Chem. Rev. 95 (1995) 735-758

DOI: 10.1021/cr00035a013

Google Scholar

[7] M. M. Joshi, N. K. Labhsetwar, P. A. Mangrulkar, et al., Visible light induced photoreduction of methyl orange by N-doped mesoporous titania, Appl. Catal. A: Gen 357 (2009) 26-33

DOI: 10.1016/j.apcata.2008.12.030

Google Scholar

[8] Y. H. Ao, J. J. Xu, D. G. Fu, C. W. Yuan, Visible-light responsive C, N-codoped Titania hollow spheres for X-3B dye photodegradation, Micropor. Mesopor. Mat. 118 (2009) 382-386

DOI: 10.1016/j.micromeso.2008.09.010

Google Scholar

[9] S. X. Liu, X. Y. Chen, A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation, J. Hazard. Mater 152 (2008) 48-55

DOI: 10.1016/j.jhazmat.2007.06.062

Google Scholar

[10] C. H. Lu, C. Y. Hu, C. H. Wu, Low-temperature preparation and characterization of iron-ion doped titania thin films, J. Hazard. Mater 159 (2008) 636-639

DOI: 10.1016/j.jhazmat.2008.02.050

Google Scholar

[11] I. Paramasivam, J. M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles, Electrochem. Commun. 10 (2008) 71-75

DOI: 10.1016/j.elecom.2007.11.001

Google Scholar

[12] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov, Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal. B: Environ 63 (2006) 266-271

DOI: 10.1016/j.apcatb.2005.10.014

Google Scholar

[13] M. K. Seery, R. George, P. Floris, S. C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photoch. Photobio. A 189 (2007) 258-263

DOI: 10.1016/j.jphotochem.2007.02.010

Google Scholar

[14] I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, et al., Silver Modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange, Appl. Catal. B: Environ 42 (2003) 187-201

DOI: 10.1016/s0926-3373(02)00233-3

Google Scholar

[15] L. Sun, J. Li, C. L. Wang, et al., Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity, J. Hazard. Mater. 171 (2009) 1045-1050

DOI: 10.1016/j.jhazmat.2009.06.115

Google Scholar

[16] J. M. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles, Electrochem. Commun. 9 (2007) 1783-1787

DOI: 10.1016/j.elecom.2007.04.002

Google Scholar

[17] J. M. Macak, P. J. Barczuk, H. Tsuchiya, et al., Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol, Electrochem. Commun. 7 (2005) 1417-1422

DOI: 10.1016/j.elecom.2005.09.031

Google Scholar

[18] V. Iliev, D. Tomova, L. Bilyarska and L. Petrov, Photooxidation of Xylenol Orange in the Presence of Palladium modified TiO2 Catalysts, Catal. Commun. 5 (2004) 759-763

DOI: 10.1016/j.catcom.2004.09.005

Google Scholar

[19] A. A. Ashkarran, S. M. Aghigh, M. Kavianipour, et al., Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Curr. Appl. Phys. doi:10.1016/ j.cap.2011.01.042

DOI: 10.1016/j.cap.2011.01.042

Google Scholar

[20] Y, Takahashi. T, Tatsuma. Visible light-induced. Photocatalysts. With reductive energy storage abilities, Electrochem. Commun. 10 (2008) 1404-1407

DOI: 10.1016/j.elecom.2008.07.026

Google Scholar

[21] Y. Tian, T. Tatsuma, Mecchanisms and Application of Plasmon-Induced Charge Separation of TiO2 Films Loads with Gold Nanoparticles, J. Am. Chem. Soc. 127 (2005) 7632-7637

DOI: 10.1021/ja042192u

Google Scholar