Synthesis of Si-N-C Ceramic Composites by Pyrolysis of Polysilazane and Polycarbosilane

Article Preview

Abstract:

Non-oxide ceramics derived from organo-elemental precursors in the system Si-N-C has attracted much attention for its excellent properties. Typically, the Si-N-C ceramic shows homogeneous elemental distribution, better high-temperature stability and oxidation resistance which making them attractive for applying in various branches of technology. A novel amorphous ceramic is fabricated from precursors mixed by polysilazane (PSZ) and polycarbosilane (PCS). The Si-N-C ceramics (PSZ/PCS=2 (w/w)) are heat-treated between 1200°C and 1500°C in nitrogen to crystallization of microcrystalline α-Si3N4 and nanocrystalline SiC. The obtained Si-N-C ceramics are characterized by density, ceramic yield, porosity, X-ray diffraction and Scanning electron microscope to analyze the crystallization and microstructure. The experimental results indicate that the ratio of PSZ/PCS and the annealing temperature have a big influence on the crystallization behavior.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

306-309

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Joachim, A. Fritz, Progress in materials synthesis, Z. Metallked. 87 (1996) 827-840.

Google Scholar

[2] M. Narisawa, M. Shimoda, K. Okamura, et al., Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors, Bull. Chem. Soc. Jpn. 68 (1995) 1098-1104.

DOI: 10.1246/bcsj.68.1098

Google Scholar

[3] M. Peuckert, T. Vaahs and M. Brück, Ceramics from organometallic polymers, Adv. Mater. 2 (1990) 398-404.

DOI: 10.1002/adma.19900020903

Google Scholar

[4] O. Funayama, T. Aoki, T. Kato, et al., Synthesis of thermosetting copolymer of polycarbosilane and perhydropolysilazane, J. Mater. Sci. 31 (1996) 6369-6375.

DOI: 10.1007/bf00354462

Google Scholar

[5] R. Riedel, L. M. Ruwisch, L. An and R. Raj, Amorphous siliconboron carbonitride ceramic with high viscosity at temperatures above 1500°C, J. Am. Ceram. Soc. 81 (1998) 3341-3344.

DOI: 10.1111/j.1151-2916.1998.tb02780.x

Google Scholar

[6] Y. Wang, Y. Fan, L. Zhang, et al., Polymer-derived SiAlCN ceramics resist oxidation at 1400°C, Scripta Mater. 55 (2006) 295-297.

DOI: 10.1016/j.scriptamat.2006.05.004

Google Scholar

[7] S. Yajiam, Y. Hasegawa, K. Okamura and T. Matsuzawa, Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor, Nature. 273 (1978) 525-527.

DOI: 10.1038/273525a0

Google Scholar

[8] K. J. Wynne, R. W. Rice, Ceramics via polymer pyrolysis, Annu. Rev. Mater. Sci. 14 (1984) 297-334.

DOI: 10.1146/annurev.ms.14.080184.001501

Google Scholar

[9] D. Seyferth, G. H. Wiseman, High-yield synthesis of Si3N4/SiC ceramic materials by pyrolysis of a novel polyorganosilazane, J. Am. Ceram. Soc. 67 (1984) C132-C133.

DOI: 10.1111/j.1151-2916.1984.tb19620.x

Google Scholar

[10] H. B. Li, L. T. Zhang, L. F. Cheng, et al., Effect of the polycarbosilane structure on its final ceramic yield, J. Eur. Ceram. Soc. 28 (2008) 887-891.

Google Scholar

[11] C. Haluschka, H. J. Kleebe, R. Franke and R. Riedel, Silicon carbonitride ceramics derived from polysilazanes Part I. Investigation of compositional and structural properties, J. Eur. Ceram. Soc. 20 (2000) 1355-1364.

DOI: 10.1016/s0955-2219(00)00010-8

Google Scholar

[12] C. Konetschny, D. Galusek, S.Reschke, et al., Dense silicon carbonitride ceramics by pyrolysis of cross-linked and warm pressed polysilazane powers, J. Eur. Ceram. Soc. 19 (1999) 2789-2796.

DOI: 10.1016/s0955-2219(99)00070-9

Google Scholar

[13] K. Jian, W. W. Zhen, Q. S. Ma, et al., Study on crosslinking of polycarbosilane/polysilazane precursor system, Silicone Material. 17 (2003) 5-7.

Google Scholar