A Simple Laminated Alumina Based Composite with High Work of Fracture

Article Preview

Abstract:

A kind of laminated composite named Al2O3/Nylon/Al with high work of fracture was prepared by a simple process using epoxy resin adhesives as binder in a leaky mold at a pressure of 5 MPa. Light microscopy and scanning electron microscopy were employed to observe the microstructures and crack propagation of the laminated composites. The flexural strength and fracture toughness were measured through three-point bending test, and the work of fracture of the laminated composite was calculated from load-displacement curves of three-point bending test. The experimental results show the composite have low Young's modulus and flexural strength, however, the work of fracture of the laminated composite appears to be high of 2850 J/m2, and the fracture toughness reaches about 11 MPa•m1/2. Analysis of microstructure and crack propagation reveals that the failure of the laminated composite exhibit distinctive characteristic.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

484-489

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.L. Ighodaro, O. I.Okoli. Int, Fracture toughness enhancement for alumina systems: A review. J. Appl. Ceram. Technol. 5(3) (2008) 313-323.

DOI: 10.1111/j.1744-7402.2008.02224.x

Google Scholar

[2] R.W. Steinbrech, Toughening mechanism for ceramic materials, J. Eur. Ceram. Soc. 10 (1992) 131.

Google Scholar

[3] P.Y. Chena, A.Y.M. Lina, Structure and mechanical properties of selected biological materials, J. Mech. Behav. Biomed. Mater. 1 (2008) 208-226.

Google Scholar

[4] H. Tomaszewski, H. Weglarz, A.Wajler, et al, Multilayer ceramic composites with high failure resistance, J. Eur. Ceram. Soc. 27 (2007) 1373-1377.

DOI: 10.1016/j.jeurceramsoc.2006.04.030

Google Scholar

[5] T. Watanabe, G. J. Zhang, X. M. Yue, et al, Multilayer composites in Al2O3/MoSi2 system, Mater. Chem. Phy. 67 (2001) 256-262.

Google Scholar

[6] W.J. Clegg, K. Kendall, N.M. Alford, A simple way to make tough ceramics, Nature. 347 (1990) 455.

DOI: 10.1038/347455a0

Google Scholar

[7] J.X. Zhang, R.Huang, Hui Gu, et al, High toughness in laminated SiC ceramics from aqueous tape casting, Scripta Mater. 52 (2005) 381–385.

DOI: 10.1016/j.scriptamat.2004.10.026

Google Scholar

[8] M. Hadad, G. Blugan, J. K¨ubler, et al, Tribological behaviour of Si3N4 and Si3N4–%TiN based composites and multi-layer laminates, Wear. 260 (2006) 634–641.

DOI: 10.1016/j.wear.2005.03.027

Google Scholar

[9] R. Bermejo, Y. Torres, A.J. Sanchez-Herencia, et al, Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Mater. 54 (2006) 45–4757.

DOI: 10.1016/j.actamat.2006.06.008

Google Scholar

[10] R. Bermejo, C. Baudn, R. Moreno, et al, Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers, Compos. Sci. Technol. 67 (2007) 1930–1938.

DOI: 10.1016/j.compscitech.2006.10.010

Google Scholar

[11] Y. Shigegkai, β-SiAION-silicon nitride multilayerd composites, J. Am. Ceram. Soc. 80 (1997) 2624.

Google Scholar

[12] H. Liu, M. Hsu, Behavior of multiplayer silicon nitride/boron nitride ceramic, J. Ceram. Soc. Jpn. 101[9] (1993) 1068-1070.

Google Scholar

[13] D. Kovar, M.D. Thouless, J.W. Halloran, Crack deflection and propagation in layered silicon nitride boron nitride ceramics, J. Am. Ceram. Soc. 81[4] (1998) 1104-1112.

DOI: 10.1111/j.1151-2916.1998.tb02438.x

Google Scholar

[14] Ch. You, D.L. Jiang, H.S. Tan, SiC/TiC laminated structure shaped by electrophoretic deposition, Ceram. Int. 30 (2004) 813-815.

DOI: 10.1016/j.ceramint.2003.10.002

Google Scholar

[15] J.H. She, T. Inoue, K. Ueno, Multilayer A12O3/SiC ceramics with improved mechanical behavior, J. Eur. Ceram. Soc. 20[11] ( 2000) 1771-1775.

DOI: 10.1016/s0955-2219(00)00048-0

Google Scholar

[16] P. Boch, T. Chartier, Tape casting of Al2O3/ZrO2 laminated composites, J. Am. Ceram. Soc. 69 (1986) 191-192.

DOI: 10.1111/j.1151-2916.1986.tb04836.x

Google Scholar

[17] T. Chartier, T. Rouxel, Tape casting of Al2O3/ZrO2 laminates: Processing and Mechanical Properties , J. Eur. Ceram. Soc. 17 (1997) 299-308.

Google Scholar

[18] J. Gurauskis, A.J. sanchez-Herencia, C. Baudin, Al2O3/Y-TZP and Y-TZP materials fabricated by stacking layers obtained by aqueous tape casting , J. Eur. Ceram. Soc. 26 (2006) 1489-1496.

DOI: 10.1016/j.jeurceramsoc.2005.02.013

Google Scholar

[19] A.J. sanchez-Herencia, J. Gurauskis, C. Baudin, Processing of Al2O3/Y-TZP laminates from water-based cast tapes, Comp. B. 37 (2006) 499-508.

DOI: 10.1016/j.compositesb.2006.02.002

Google Scholar

[20] H. Tomaszewski, H. Weglarz, A. Wajler, et al, Multilayer ceramic composites with high failure resistance, J. Eur. Ceram. Soc. 27 (2007) 1373-1377.

DOI: 10.1016/j.jeurceramsoc.2006.04.030

Google Scholar

[21] Y.Y. Gao, S.Y. Zheng, K.H Zhu, Analysis of mechanical properties and SEM for laminated SiC/W composites. Mater. lett. 50[5-6] (2001) 358-363.

DOI: 10.1016/s0167-577x(01)00256-7

Google Scholar

[22] K. H. Zuo, D.L. Jiang, Q. Lin, Al2O3/Ni laminar ceramics shaped by tape casting and electroless plating, J. Am. Ceram. Soc. 88[9] (2005) 2659–2661.

DOI: 10.1111/j.1551-2916.2005.00493.x

Google Scholar

[23] K. H. Zuo, D.L. Jiang, Q. Lin, Fabrication and interfacial structure of Al2O3/Ni laminar ceramics, Ceram. Int. 32 (2006) 613–616.

DOI: 10.1016/j.ceramint.2005.04.027

Google Scholar

[24] K. H. Zuo, D.L. Jiang, Q. Lin,et al, Improving the mechanical properties of Al2O3/Ni laminated composites by adding Ni particles in Al2O3 layers, Mater. Sci. Eng. A. 443 (2007) 296-300.

DOI: 10.1016/j.msea.2006.09.055

Google Scholar

[25] S.H. Hong, H.Y. Kim, J.R. Lee, Crack propagation behavior during three-point bending of polymer matrix composite/Al2O3/polymer matrix composite laminated composites, Mater. Sci. Eng. A. 194 (1995) 157-163.

DOI: 10.1016/0921-5093(94)09677-5

Google Scholar