[1]
D.P. Goncalves, F.C.L. Melo, A.N. Klein, et al. Analysis and investigation of ballistic impact on ceramic/metal composite armour, Int. J. Machine Tools and Manufacture. 44 (2004) 307-316.
DOI: 10.1016/j.ijmachtools.2003.09.005
Google Scholar
[2]
G.E. Hauver. Ballistic performance of ceramic targets, Army Symposium on Solid Mechanics. USA, (1993).
Google Scholar
[3]
E. Medvedovski. Alumina ceramics for ballistic protection, Am. Ceram. Soc. Bull. 81 (2002) 45-50.
Google Scholar
[4]
C. Steven, P Atahan. Encapsulated ceramic armor, US Patent 7604876B2. (2003).
Google Scholar
[5]
P. Richard, A, Daniel. Ceramic armor and method or making by encapsulation including use of a stiffening plate, US Patent, 2006/0137517. (2006).
Google Scholar
[6]
K.J. Chen, C.T. Sun. Dynamic large deflection response of composite laminates subjected to impact, Composites and Structure, 4 (1985) 59-73.
DOI: 10.1016/0263-8223(85)90020-0
Google Scholar
[7]
T. Sun, S.H. Yang, NASA CR-159884, NASA, Washington, DC.
Google Scholar
[8]
W. Bruchey, E. Horwath, D. Templeton, et al. System Design Methodology for the development of high efficiency ceramic armores, 17th Int. Symp. on Ballistic v3 Midrand, South Africa (1998) 167-174.
Google Scholar
[9]
E. Horwath, W. Bruchey. The Ballistic Behavior of HIP Encapsulated Ceramic Tiles, 8th Annual TARDEC Ground Vehicle Survivability Symposium, Monterey, CA, 1997.
Google Scholar
[10]
J.M. Wells, H.G. William, N.L. Rupert. Pre-impact Damage Assessment Using X-ray Tomography of SiC Tile Encapsulated in Discontinuously Reinforced Aluminum Metal Matrix Composite, International Journal of Composites Conference, Australia Sydney, 2001.
Google Scholar
[11]
J.M. Wells, H.G. William, N.L. Rupert Progress in the 3-D Visualization of Interior Ballistic Damage in Armor Ceramics, Ceramic Engineering and Science Processing, 27 (2006) 441-448.
Google Scholar
[12]
D. Yaziv, G. Rosenberg, H. Shevah, Parametric Study of Ceramic Laminated Armor Configurations, 3rd TACOM Conference, Monterey, Ca, 1987.
Google Scholar
[13]
D. Yaziv, G. Rosenberg, Y. Partom, Differential Ballistic Efficiency of Applique Armor, 9th Int. Symp.Bal., UK, 1986.
Google Scholar
[14]
Y.W. Bao, S.B. Su, J.J. Yang, et al. Prestressed ceramics and improvement of impcat resistance, Materials Letters, 57 (2002) 518-524.
DOI: 10.1016/s0167-577x(02)00822-4
Google Scholar
[15]
T.J. Holmquist, G.R. Johnson. Modeling prestressed ceramic and its effect on ballistic performance, International Journal of Impact Engineering, 31 (2005) 113-127.
DOI: 10.1016/j.ijimpeng.2003.11.002
Google Scholar
[16]
R.L Woodward, W.A. Gooch, R.G. O'Donnell, et al. A study of fragmentation in the ballistic impact of ceramics[J]. International Journal of Impact Engineering, 15 (2005) 605-618.
DOI: 10.1016/0734-743x(94)90122-2
Google Scholar
[17]
C.E.Jr. Anderson, A. Suzanne, R. Timmons. Ballistic performance of confined 99.5%-Al2O3 ceramic tiles, International Journal of Impact Engineering, 19 (2005) 703-713.
DOI: 10.1016/s0734-743x(97)00006-7
Google Scholar
[18]
C.E.Jr. Anderson, B.L. Morris. The ballistic performance of confined AL203 ceramic tiles, International Journal of Impact Engineering, 12 (1992) 167-187.
DOI: 10.1016/0734-743x(92)90395-a
Google Scholar
[19]
M. Vural, Z. Erim. Ballistic performance of alumina ceramic armours, the USA: Hawaii, (2001) 103-110.
Google Scholar
[20]
D.A. Shockey, A.H. Marchand, S.R. Skaggs, et al. Failure phnomenology of confined ceramics targets and impacting rods, International Journal of Impact Engineering, 9 (1990) 263-275.
DOI: 10.1016/0734-743x(90)90002-d
Google Scholar