[1]
J.W. Shen, G.S. Lv, Z. Ma, et al, The Cracks Forming and Developing of Thermal Barrier Coatings in Thermal Shock ,New Technology & New Process. 04 (2002) 39-41.
Google Scholar
[2]
K. Kokini, Y.R. Takeuchi B.D. Choules, Surface thermal cracking of thermal barrier coatings owing to stress relaxation: zirconia vs. mullite, Surface and Coatings Technology. 82 (1996) 77-82.
DOI: 10.1016/0257-8972(95)02647-9
Google Scholar
[3]
K. Kokini Y.R. Takeuchi, B.D. Choules, Thermal crack initiation mechanisms on the surface of functionally graded ceramic thermal barrier coatings, Ceramics International. 22 (1996) 397-401.
DOI: 10.1016/0272-8842(95)00122-0
Google Scholar
[4]
B.D. Choules, K. Kokini, T.A. Taylor, Thermal fracture of thermal barrier coatings in a high heat flux environment, Surface and Coatings Technology. 106 (1998) 23-29.
DOI: 10.1016/s0257-8972(98)00485-x
Google Scholar
[5]
D. Zhu, R.A. Miller, B.A. Nagaraj, et al, Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-state laser heat flux technique, Surf. Coatings Technology. 138 (2001) 1-8.
DOI: 10.1016/s0257-8972(00)01145-2
Google Scholar
[6]
B.D. Choules, K. Kokini, T.A. Taylor, Thermal fracture of ceramic thermal barrier coatings under high heat flux with time-dependent behavior.: Part 1. Experimental results, Materials Science and Engineering: A. 299 (2001) 296-304.
DOI: 10.1016/s0921-5093(00)01393-9
Google Scholar
[7]
J.W. Hutchinson, A.G. Evans, On the delamination of thermal barrier coatings in a thermal gradient, Surface and Coatings Technology. 149 (2002) 179-184.
DOI: 10.1016/s0257-8972(01)01451-7
Google Scholar
[8]
M. Arnold, A.R. Boccaccini, G. Ondracek, Theoretical and experimental considerations on the thermal shock resistance of sintered glasses and ceramics using modeled microstructure-property correlations, Journal of Materials Science. 31 (1996) 463-469.
DOI: 10.1007/bf01139165
Google Scholar
[9]
H.S. Zhang, F.C. Wang, Z.Ma, et al, Research Development of Pores in Plasma Sparayed Coatings, Materials Review. 20 (2006) 16-18.
Google Scholar
[10]
Y.I. Mai, B.R. Lawn. Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model, J. Am. Ceram. Soc. 70 (1987) 289-294.
DOI: 10.1111/j.1151-2916.1987.tb04983.x
Google Scholar
[11]
L.Q. Chen, S.K. Gong, H.B. Xu, Influence of vertical cracks on failure mechanism of EB-PVD thermal barrier coatings during thermal cycling. Acta Metallurgica Sinica. 41 (2005) 979-984.
Google Scholar
[12]
S.B. Tang, C.A. Tang, Z.Z. Liang, et al, Failure process analysis of ceramic materials subjected to thermal shock, Acta Materiae Compositae Sinica. 25 (2008) 115-122.
Google Scholar
[13]
B. Zhou, K. Kokini, Effect of pre-existing surface crack morphology on the interfacial thermal fracture of thermal barrier coatings: a numerical study, Mater. Sci. Eng. A. 348 (2003) 271-279.
DOI: 10.1016/s0921-5093(02)00730-x
Google Scholar
[14]
LS-DYNA Key word user's manual Livermore Software Technology Corporation, <http://www.lstc.com>.
Google Scholar
[15]
F.R. Tuler, B.M. Butcher, A criterion for the time dependence of dynamic fracture, International Journal of Fracture. 4 (1968) 431-437.
DOI: 10.1007/bf00186808
Google Scholar
[16]
Technology L S. LS-DYNA[DB/CD].
Google Scholar