Rare Earth and Perovskite Composite Ceramics Applied for the Thermistor with Wide Temperature Range

Article Preview

Abstract:

Different compositions (aY2O3+bCeO2)-0.4YCr0.5Mn0.5O3 (a+b=0.6) were prepared via a conventional solid-state reaction at 1200°C, and sintered under air atmosphere at 1600°C. XRD patterns analysis has revealed that for 0<a<0.6, the major phases present in the calcined bodies are Y2O3, CeO2 and orthorhombic perovskite YCr0.5Mn0.5O3 phase, respectively. SEM and EDAX observations confirm the obtaining of three-phased composite ceramics. The brighter regions are the Y2O3 and CeO2 phase, whereas the darker are perovskite phase. All the NTC thermistors prepared show a similar linear relationship between the ln of the resistance and the reciprocal of the absolute temperature, indicative of NTC characteristics. For 0≤a≤0.6, the plotting curves of resistance- temperature characteristic are none linear on the wide temperature range, exhibit two branches. The obtained B25/150 and B700/1000 constants of the thermistors are in the range 3600-4400K and 6700-12000K. The magnitude order of the resistivity at 25°C is of 106-107Ωcm and activation energies vary from 0.313 to 1.029 eV at low and high temperatures, respectively. These compounds, having good NTC characteristics in a wide range of temperatures, could be applied as potential candidates for NTC thermistors from ambient to 1100°C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

613-616

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Feteira, Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective, J. Am. Ceram. Soc. 92 (2009) 967-983.

DOI: 10.1111/j.1551-2916.2009.02990.x

Google Scholar

[2] K. Fujiwara, S. Lee, N. Donnelly, et al., Resistance Degradation in Y(Cr,Mn)O3-Y2O3 Composite NTC Ceramics in Hostile Environments, J. Am. Ceram. Soc. 92 (2009) 2634-2641.

DOI: 10.1111/j.1551-2916.2009.03253.x

Google Scholar

[3] A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere, J. Eur. Ceram. Soc. 31 (2011) 1457-1463.

DOI: 10.1016/j.jeurceramsoc.2010.12.025

Google Scholar

[4] D. Houivet, J. Bernard, J. M. Haussonne, High temperature NTC ceramic resistors (ambient–1000 °C), J. Eur. Ceram. Soc. 24 (2004) 1237-1241.

DOI: 10.1016/s0955-2219(03)00376-5

Google Scholar

[5] A. Banerjee, S.A. Akbar, A new method for fabrication of stable and reproducible yttria-based thermistors, Sens. Actuators, A. 87 (2000) 60-66.

DOI: 10.1016/s0924-4247(00)00466-0

Google Scholar

[6] Y.Q. Lan, L.H. Yu, G.M. Chen, S.F. Yang, A.M. Chang, Construction and Characterization of NTC Thermistors at Low Temperature, Int. J. Thermophys. 31 (2010) 1456-1465.

DOI: 10.1007/s10765-010-0790-0

Google Scholar

[7] I.H. Ismailzade, G.A. Smolenskii, V.I. Nesterenko, F.A. Agaev, X-ray and electric investigations of the systems Y(Mn1−xBx)O3 (B = Fe3+, Cr3+, Al3+), Phys. Status Solidi A. 5 (1971) 83-89.

DOI: 10.1002/pssa.2210050108

Google Scholar

[8] A. Feltz, Perovskite forming ceramics of the system SrxLa1-xTix+yCoyCo1-x-2yO3 for NTC thermistor applications, J. Eur. Ceram. Soc. 20 (2000) 2367-2376.

DOI: 10.1016/s0955-2219(00)00149-7

Google Scholar

[9] W.J. Weber, C.W. Griffin, J.L. Bates, Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3, J. Am. Ceram. Soc. 70 (1987) 265-270.

DOI: 10.1111/j.1151-2916.1987.tb04979.x

Google Scholar

[10] G.V. Subba Rao, B.M. Wanklyn, C.N.R. Rao, Electrical transport in rare earth ortho-chromites, -manganites and -ferrites, J. Phys. Chem. Solids. 32 (1971) 345-358.

DOI: 10.1016/0022-3697(71)90019-9

Google Scholar

[11] K.P. Bansal, S. Kumari, B.K. Das, G.C. Jain, On some transport properties of strontium doped lanthanum chromite ceramics, J. Mater. Sci. 18 (1983) 2095-2100.

DOI: 10.1007/bf00555003

Google Scholar

[12] T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation, densification, and electrical conductivity of air-sinterable Y(Cr1-xMgx)O3 prepared by the hydrazine method, Mater. Sci. Eng., B. 86 (2001) 255-259.

DOI: 10.1016/s0921-5107(01)00699-7

Google Scholar