Optical Fiber Oxygen Sensor Based on Ru (II) Complex and Porous Silica Nanoparticles Embedded in Sol-Gel Matrix

Article Preview

Abstract:

This paper presents a high-sensitivity oxygen sensor that comprises an optical fibre coated at one end with tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (II) ([Ru (dpp)3]2+) and porous silica nanoparticles embedded in an n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio IN2/IO2, where IN2 and IO2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results show that the oxygen sensor has a sensitivity of 26. The experimental results show that compared to oxygen sensor based on Ru (II) complex immobilized in the sol-gel matrix, the proposed optical fibre oxygen sensor has higher sensitivity. In addition to the increased surface area per unit mass of the sensing surface, the porous silica nanoparticles increase the sensitivity because a substantial number of aerial oxygen molecules penetrate the porous silica shell. The proposed optical sensor has the advantages of easy fabrication, low cost, fast response and high sensitivity for oxygen monitoring using a cheap LED as a light source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

612-617

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.C. Clark, Jr., Monitor and control of blood and tissue oxygen tensions, Trans. Am. Soc. Artif. Intern. Organs. 2 (1956) 41-48.

Google Scholar

[2] J.N. Demas, B.A. Degraff, P.B. Coleman, Oxygen sensors based on luminescence quenching, Anal. Chem. 71 (1999) 793A- 800A.

DOI: 10.1021/ac9908546

Google Scholar

[3] K. Tsukada, S. Sakai, K. Hase, H. Minamitani, Development of catheter type optical oxygen sensor and applications to bioinstrumentation, Biosens. Bioelectron. 18 (2003) 1439-1445.

DOI: 10.1016/s0956-5663(03)00072-1

Google Scholar

[4] E. VanderDonckt, B. Camerman, R. Herne, R. Vandeloise, Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices, Sens. Actuators B Chem. 32 (1996) 121-127.

DOI: 10.1016/0925-4005(96)80120-1

Google Scholar

[5] S.K. Lee, I. Okura, Photostable optical oxygen sensing material: Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene, Anal. Comm. 34 (1997) 185-188.

DOI: 10.1039/a701130j

Google Scholar

[6] A.N. Watkins, B.R. Wenner, J.D. Jordan, W.Y. Xu, J.N. Demas, F.V. Bright, Portable, low-cost, solid-state luminescence-based O2 sensor, Appl. Spectrosc. 52 (1998) 750-754.

DOI: 10.1366/0003702981944175

Google Scholar

[7] Y. Tang, E.C. Tehan, Z. Tao, F.V. Bright, Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability, Anal. Chem. 75 (2003) 2407-2413.

DOI: 10.1021/ac030087h

Google Scholar

[8] R.M. Bukowski, R. Ciriminna, M. Pagliaro, F.V. Bright, High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+), Anal. Chem. 77 (2005) 2670-2672.

DOI: 10.1021/ac048199b

Google Scholar

[9] S.K. Lee, I. Okura, Porphyrin-doped sol-gel glass as probe for oxygen sensing, Anal. Chim. Acta 342 (1997) 181-188.

DOI: 10.1016/s0003-2670(96)00562-4

Google Scholar

[10] T.S. Yeh, C.S. Chu, Y.L. Lo, Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices, Sens. Actuators B Chem. 119 (2006) 701-707.

DOI: 10.1016/j.snb.2006.01.051

Google Scholar

[11] C.S. Chu, Y.L. Lo, High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes, Sens. Actuators B Chem. 124 (2007) 376-382.

DOI: 10.1016/j.snb.2006.12.049

Google Scholar

[12] C. McDonagh, B.D. MacCraith, A.K. McEcoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase, Anal. Chem. 70 (1998) 45-50.

DOI: 10.1021/ac970461b

Google Scholar

[13] B.F. Lei, B. Li, H.R. Zhang, S.Z. Lu, Z.H. Zheng, W.L. Li, Y. Wang, Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor, Adv. Funct. Mater. 613 (2006) 1883-1891.

DOI: 10.1002/adfm.200500737

Google Scholar

[14] X.Y. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, L.A. Sarnuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors, Nano Lett., 11 (2002) 1273-1275.

DOI: 10.1021/nl020216u

Google Scholar

[15] T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y.S. Liu, C. Chang, J. Guo, Y. Yin, A self templated route to hollow silica microspheres, J. Phys. Chem. C 113 (2009) 3168-3175.

DOI: 10.1021/jp810360a

Google Scholar

[16] Q. Zhang, T.R. Zhang, J.P. Ge, Y.D. Yin, Permeable silica shell through surface-protected etching, Nano Lett. 8 (2005) 2867-2871.

DOI: 10.1021/nl8016187

Google Scholar

[17] B.H. Han, I. Manners, M.A. Winnik, Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films, Chem. Mater. 17 (2005) 3160-3171.

DOI: 10.1021/cm047770k

Google Scholar

[18] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed; Kluwer Academic/Plenum Press, New York, 1999, Chapter 8 and 9.

Google Scholar

[19] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[20] C.S. Chu, Y. L. Lo, Highly Sensitive and Linear Optical Fiber Carbon Dioxide Sensor Based on Sol-Gel Matrix Doped with Silica Particles and HPTS, Sens. Actuators B Chem. 143 (2009) 205-210.

DOI: 10.1016/j.snb.2009.09.019

Google Scholar