[1]
Sneiderman P., 1998, Metallic glass: material of the future?, Headlines of Hopkins, Johns Hopkins University News Release.
Google Scholar
[2]
Klement W., Willens R. H., Duwez P., 1960, Non-crystalline structure in solidified gold-silicon alloys, Nature, Vol. 187, pp.869-870.
DOI: 10.1038/187869b0
Google Scholar
[3]
Duwez, P. Willens R. H., Klement W., 1960, Continuous series of metastable solid solutions in silver-copper alloys, Journal of Applied Physics, Vol. 31, pp.1136-1137.
DOI: 10.1063/1.1735777
Google Scholar
[4]
Chen, H.S., D., Turnbull, 1968, Evidence of a glass-liquid transition in a Au-Ge-Si Alloy, Journal of Chemical Physics, Vol. 48, pp.2560-2571.
Google Scholar
[5]
Johnson, W.L., 1999, Bulk Glass-Forming Metallic Alloys: Science and Technology, Materials Research Bulletin, Vol. 24/10, pp.42-56.
DOI: 10.1557/s0883769400053252
Google Scholar
[6]
Kasvesh, S., 1978, Metallic Glasses, ASM International, Metals Park, Ohio.
Google Scholar
[7]
Chen, H.S., 1974, Thermodynamic consideration of formation and stability of metallic glass, Acta Metallurgica, Vol. 22, pp.1505-1511.
DOI: 10.1016/0001-6160(74)90112-6
Google Scholar
[8]
Chen, H.S., 1976, Glass temperature formation and stability of Fe, Co, No, Pb and Pt based glasses, Materials Science and Engineering, Vol. 23, pp.151-154.
DOI: 10.1016/0025-5416(76)90185-3
Google Scholar
[9]
Inoue, A., Yamaguchi, H., Zhang, T., 1990, Al-La-Cu Amorphous Alloys with a wide supercooled region, Materials Transaction, The Japan Institute of Metals, Vol. 31, pp.104-109.
DOI: 10.2320/matertrans1989.31.104
Google Scholar
[10]
Inoue, A., Nakamura, T., Nishiyama, N., Masumoto, T., 1992, Mg-Cu-Y Bulk Amorphous-Alloys with a wide supercooled region, Materials Transaction, The Japan Institute of Metals, Vol. 33, pp.937-945.
DOI: 10.2320/matertrans1989.33.937
Google Scholar
[11]
Inoue, A., Zhang, T., Nishiyama, N., 1993, Preparation of 16mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 Alloy, Materials Transaction, JIM, Vol. 34, pp.1234-1237.
Google Scholar
[12]
Peker, A., Johnson, W. L., 1993, A highly processable metallic glass Zr41. 5Ti13. 8Cu12. 5Ni10Be22. 5, Applied Physics Letters., Vol. 63, pp.2342-2344.
Google Scholar
[13]
Inoue A., Nishiyama N., Matsuda Y., 1996, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching, Materials Transactions, The Japan Institute of Metals, Vol. 37/2, pp.181-184.
DOI: 10.2320/matertrans1989.37.181
Google Scholar
[14]
Lu Z. P., 2000, Glass Forming Ability and lass Transition study of rare-Earth Based Bulk Metallic Glasses, PhD Thesis, National University of Singapore.
Google Scholar
[15]
M. Bakkal, C.T. Liu, T. R. Watkins, R.O. Scattergood, A.J. Shih, Oxidation and crystallization of Zr-based bulk metallic glass due to machining, Intermetallics 12 (2004) 195-204.
DOI: 10.1016/j.intermet.2003.09.017
Google Scholar
[16]
G.J. Gilbert, J.W. Ager, V. Schroeder, R.O. Ritchie, J.P. Lloyd, J.R. Graham, Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass, Applied Physics Letters 74 (1999) 3809-3811.
DOI: 10.1063/1.124187
Google Scholar
[17]
M. Berger, M. Larsson, S. Hogmark, Evaluation of magnetron-sputtered TiB2 intended for tribological applications, Surface and Coatings Technology 124 (2000) 253-261.
DOI: 10.1016/s0257-8972(99)00638-6
Google Scholar
[18]
R.K. Williams, R.S. Graves, F.J. Weaver, Transport properties of high purity polycrystalline titanium diboride, Journal of Applied Physics 59 (5) (1986) 1552-1556.
DOI: 10.1063/1.336463
Google Scholar
[19]
R. Komanduri, R.H. Brown, On the mechanics of chip segmentation in machining, Journal of Engineering for Industry 103 (1981) 33-51.
DOI: 10.1115/1.3184458
Google Scholar
[20]
J. Sheikh-Ahmad, J.A. Bailey, Flow instability in the orthogonal machining of CP titanium, Journal of Manufacturing Science and Engineering 119 (1997) 307-313.
DOI: 10.1115/1.2831108
Google Scholar
[21]
L.N. Lopez de lacalle, J. Perez, J.I. Llorente, J.A. Sanchez, Advanced cutting conditions for the milling of aeronautical alloys, Journal of Materials Processing Technology 100 (2000) 1-11.
DOI: 10.1016/s0924-0136(99)00372-6
Google Scholar
[22]
R. Shivpuri, Jiang Hua, P. Mittal, A. K. Srivastava, G. D. Lahoti, Microstructure-mechanics interactions in modeling chip segmentation during titanium machining, Annals of CIRP 51 (1) (2002) 71-74.
DOI: 10.1016/s0007-8506(07)61468-1
Google Scholar
[23]
I.A. Choudhury, M.A. El-Baradi, Machinability of nickel-base super alloys: a review, Journal of Materials Processing Technology 77 (1998) 278-284.
DOI: 10.1016/s0924-0136(97)00429-9
Google Scholar
[24]
R. Komanduri, T.A. Schroeder, On shear instability in machining mickel-based superalloy, Journal of Engineering of Industry 108 (1986) 93-100.
DOI: 10.1115/1.3187056
Google Scholar
[25]
W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Materials Transactions 42 (2001) 642-649.
Google Scholar
[26]
Qu, A.J. Shih, Analytical surface roughness parameters of a theoretical profile consisting of elliptical arcs, Machining Science and Technology 7 (2) (2003) 281-294.
DOI: 10.1081/mst-120022782
Google Scholar
[27]
J.R. Davis, ASM Specialty Handbook, Stainless Steels, ASM International, Ohio, (1994).
Google Scholar
[28]
J.M. Castanho, M.T. Vieira, Improving the cutting performance of TiAlN coatings using submicron metal interlayers, Key Engineering Materials, 230-232 (2002) 635-639.
DOI: 10.4028/www.scientific.net/kem.230-232.635
Google Scholar
[29]
E.M. Trent, P.K. Write, Metal Cutting, Butterworth-Heineman, Boston, (2000).
Google Scholar
[30]
M.C. Shaw, Metal cutting principles, Oxford, (1984).
Google Scholar
[31]
M. Bakkal, A.J. Shih, R.O. Scattergood, Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass, Int. Jour. of Mac. Tool and Man. 44 (2004) 915–925.
DOI: 10.1016/j.ijmachtools.2004.02.002
Google Scholar
[32]
G. Boothroyd, WA Knight, Fundamentals of machining and machine tools, 2nd Ed., Dekker, New York, (1989).
Google Scholar
[33]
M. Bakkal, A.J. Shih, R.O. Scattergood, C.T. Liu, Machining of a Zr-Ti-Al-Cu-Ni metallic glass, Scripta Materialia, 50 (2004) 583-588.
DOI: 10.1016/j.scriptamat.2003.11.052
Google Scholar
[34]
S.A. Batzer, D.M. Haan, P.D. Rao, W.W. Olson, J.W. Sutherland, Chip morphology and hole surface texture in the drilling of cast aluminum alloys, Journal of Materials Processing Technology 79 (1998) 72–78.
DOI: 10.1016/s0924-0136(97)00324-5
Google Scholar
[35]
S. Min, D.A. Dornfeld, Y. Nakao, Influence of exit surface angle on drilling burr formation, Journal of Manufacturing Science and Engineering 125 (2003) 637-644.
DOI: 10.1115/1.1596573
Google Scholar
[36]
Kang, I.S.; Kim, J.S.; Kim, J.H.; Kang, M.C.; Seo, Y.W. A mechanistic model of cutting force in the micro endmilling process. Journal of Materials Processing Tech. 2007, 187–188, 250–255.
DOI: 10.1016/j.jmatprotec.2006.11.155
Google Scholar
[37]
Altintas, Y. Manufacturing Automation; Cambridge University Press: Cambridge, (2000).
Google Scholar
[38]
Budak, E.; Armarego, E.J.A.; Altintas, Y. Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering 1996, 118, 216–224.
DOI: 10.1115/1.2831014
Google Scholar
[39]
Wan, M.; Zhang, W.H.; Tan, G.; Qin, G.H. New algorithm for calibration of instantaneous cutting-force coefficients and radial run-out parameters in flat endmilling. Journal of Engineering Manufacture 2007, 221 (6), 1007–1019.
DOI: 10.1243/09544054jem515
Google Scholar
[40]
Oliveria, O.; Barrow, G. An experimental study of burr formation in square shoulder face milling. International Journal of Machine Tool and Manufacturing 1996, 36, 1005–1020.
DOI: 10.1016/0890-6955(96)00014-4
Google Scholar
[41]
Bakkal, M.; Shih, A.J.; McSpadden, S.B.; Scattergood, R.O. Thrust force, torque, and tool wear in drilling of bulk metallic glass. Int. Jour. of Mac. Tool and Man. 2005, 45, 741–752.
DOI: 10.1016/j.ijmachtools.2004.11.005
Google Scholar
[42]
Lee, K.; Dornfeld, D.A. Micro-burr formation and minimization through process control. Precision Engineering 2005, 29 (2), 246– 252.
DOI: 10.1016/j.precisioneng.2004.09.002
Google Scholar
[43]
Chern, G.L., Wu, Y.J.E., Cheng, J.C., Yao, J.C. Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precision Engineering 2007, 31, 122–129.
DOI: 10.1016/j.precisioneng.2006.04.001
Google Scholar
[44]
Kalpakjian, S.; Schmid, S.R. Manufacturing Process for Engineering Materials, 4th. Ed.; Prentice Hall: New Jersey, (2003).
Google Scholar
[45]
S. Malkin, C. Guo, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial Press, New York, (2008).
Google Scholar
[46]
X. Xu, S. Malkin, Comparison of methods to measure grinding temperature, Trans. ASME, J. of Manufact. Sci. And Eng. 123 (2001) 191-196.
Google Scholar
[47]
B. Shen, G. Xiao, C. Guo, S. Malkin, A.J. Shih, Thermocouple fixation method for grinding temperature measurement, Journal of Manufacturing Science and Engineering 130 (2008) (051014, 1-8).
DOI: 10.1115/1.2976142
Google Scholar