Machinability of BMG

Article Preview

Abstract:

This chapter covers the series of machinability evaluation test result and discussions of Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass (BMG). These tests are lathe turning, drilling, milling and preliminary level grinding tests. In the continuous machining methods such as turning, drilling and grinding of BMG, above a threshold cutting speed, the low thermal conductivity of BMG leads to chip temperatures high enough to cause the chip oxidation and associated light emission. The high temperature produced by this exothermic chemical reaction causes crystallization within the chips. Chips morphology suggests that increasing amounts of viscous flow control the chip-removal process. Moreover, viscous flow and crystallization can occur during the machining of the bulk metallic glass, even under the high temperature gradient and strain rate. High cutting speed significantly reduced the forces for BMG machining due to thermal softening. However, in intermittent cutting process which is milling, there is no high temperature problem, special burr formations the rollover and the top burr were observed along the slot and achieved good surface roughness, Ra = 0.113 μm, using conventional WC-Co cutting tool. In each method, tests repeated for the conventional materials for comparison purpose. This study concludes the precision machining of BMG is possible with the selection of feasible tools and process parameters for each method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-253

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sneiderman P., 1998, Metallic glass: material of the future?, Headlines of Hopkins, Johns Hopkins University News Release.

Google Scholar

[2] Klement W., Willens R. H., Duwez P., 1960, Non-crystalline structure in solidified gold-silicon alloys, Nature, Vol. 187, pp.869-870.

DOI: 10.1038/187869b0

Google Scholar

[3] Duwez, P. Willens R. H., Klement W., 1960, Continuous series of metastable solid solutions in silver-copper alloys, Journal of Applied Physics, Vol. 31, pp.1136-1137.

DOI: 10.1063/1.1735777

Google Scholar

[4] Chen, H.S., D., Turnbull, 1968, Evidence of a glass-liquid transition in a Au-Ge-Si Alloy, Journal of Chemical Physics, Vol. 48, pp.2560-2571.

Google Scholar

[5] Johnson, W.L., 1999, Bulk Glass-Forming Metallic Alloys: Science and Technology, Materials Research Bulletin, Vol. 24/10, pp.42-56.

DOI: 10.1557/s0883769400053252

Google Scholar

[6] Kasvesh, S., 1978, Metallic Glasses, ASM International, Metals Park, Ohio.

Google Scholar

[7] Chen, H.S., 1974, Thermodynamic consideration of formation and stability of metallic glass, Acta Metallurgica, Vol. 22, pp.1505-1511.

DOI: 10.1016/0001-6160(74)90112-6

Google Scholar

[8] Chen, H.S., 1976, Glass temperature formation and stability of Fe, Co, No, Pb and Pt based glasses, Materials Science and Engineering, Vol. 23, pp.151-154.

DOI: 10.1016/0025-5416(76)90185-3

Google Scholar

[9] Inoue, A., Yamaguchi, H., Zhang, T., 1990, Al-La-Cu Amorphous Alloys with a wide supercooled region, Materials Transaction, The Japan Institute of Metals, Vol. 31, pp.104-109.

DOI: 10.2320/matertrans1989.31.104

Google Scholar

[10] Inoue, A., Nakamura, T., Nishiyama, N., Masumoto, T., 1992, Mg-Cu-Y Bulk Amorphous-Alloys with a wide supercooled region, Materials Transaction, The Japan Institute of Metals, Vol. 33, pp.937-945.

DOI: 10.2320/matertrans1989.33.937

Google Scholar

[11] Inoue, A., Zhang, T., Nishiyama, N., 1993, Preparation of 16mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 Alloy, Materials Transaction, JIM, Vol. 34, pp.1234-1237.

Google Scholar

[12] Peker, A., Johnson, W. L., 1993, A highly processable metallic glass Zr41. 5Ti13. 8Cu12. 5Ni10Be22. 5, Applied Physics Letters., Vol. 63, pp.2342-2344.

Google Scholar

[13] Inoue A., Nishiyama N., Matsuda Y., 1996, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching, Materials Transactions, The Japan Institute of Metals, Vol. 37/2, pp.181-184.

DOI: 10.2320/matertrans1989.37.181

Google Scholar

[14] Lu Z. P., 2000, Glass Forming Ability and lass Transition study of rare-Earth Based Bulk Metallic Glasses, PhD Thesis, National University of Singapore.

Google Scholar

[15] M. Bakkal, C.T. Liu, T. R. Watkins, R.O. Scattergood, A.J. Shih, Oxidation and crystallization of Zr-based bulk metallic glass due to machining, Intermetallics 12 (2004) 195-204.

DOI: 10.1016/j.intermet.2003.09.017

Google Scholar

[16] G.J. Gilbert, J.W. Ager, V. Schroeder, R.O. Ritchie, J.P. Lloyd, J.R. Graham, Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass, Applied Physics Letters 74 (1999) 3809-3811.

DOI: 10.1063/1.124187

Google Scholar

[17] M. Berger, M. Larsson, S. Hogmark, Evaluation of magnetron-sputtered TiB2 intended for tribological applications, Surface and Coatings Technology 124 (2000) 253-261.

DOI: 10.1016/s0257-8972(99)00638-6

Google Scholar

[18] R.K. Williams, R.S. Graves, F.J. Weaver, Transport properties of high purity polycrystalline titanium diboride, Journal of Applied Physics 59 (5) (1986) 1552-1556.

DOI: 10.1063/1.336463

Google Scholar

[19] R. Komanduri, R.H. Brown, On the mechanics of chip segmentation in machining, Journal of Engineering for Industry 103 (1981) 33-51.

DOI: 10.1115/1.3184458

Google Scholar

[20] J. Sheikh-Ahmad, J.A. Bailey, Flow instability in the orthogonal machining of CP titanium, Journal of Manufacturing Science and Engineering 119 (1997) 307-313.

DOI: 10.1115/1.2831108

Google Scholar

[21] L.N. Lopez de lacalle, J. Perez, J.I. Llorente, J.A. Sanchez, Advanced cutting conditions for the milling of aeronautical alloys, Journal of Materials Processing Technology 100 (2000) 1-11.

DOI: 10.1016/s0924-0136(99)00372-6

Google Scholar

[22] R. Shivpuri, Jiang Hua, P. Mittal, A. K. Srivastava, G. D. Lahoti, Microstructure-mechanics interactions in modeling chip segmentation during titanium machining, Annals of CIRP 51 (1) (2002) 71-74.

DOI: 10.1016/s0007-8506(07)61468-1

Google Scholar

[23] I.A. Choudhury, M.A. El-Baradi, Machinability of nickel-base super alloys: a review, Journal of Materials Processing Technology 77 (1998) 278-284.

DOI: 10.1016/s0924-0136(97)00429-9

Google Scholar

[24] R. Komanduri, T.A. Schroeder, On shear instability in machining mickel-based superalloy, Journal of Engineering of Industry 108 (1986) 93-100.

DOI: 10.1115/1.3187056

Google Scholar

[25] W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Materials Transactions 42 (2001) 642-649.

Google Scholar

[26] Qu, A.J. Shih, Analytical surface roughness parameters of a theoretical profile consisting of elliptical arcs, Machining Science and Technology 7 (2) (2003) 281-294.

DOI: 10.1081/mst-120022782

Google Scholar

[27] J.R. Davis, ASM Specialty Handbook, Stainless Steels, ASM International, Ohio, (1994).

Google Scholar

[28] J.M. Castanho, M.T. Vieira, Improving the cutting performance of TiAlN coatings using submicron metal interlayers, Key Engineering Materials, 230-232 (2002) 635-639.

DOI: 10.4028/www.scientific.net/kem.230-232.635

Google Scholar

[29] E.M. Trent, P.K. Write, Metal Cutting, Butterworth-Heineman, Boston, (2000).

Google Scholar

[30] M.C. Shaw, Metal cutting principles, Oxford, (1984).

Google Scholar

[31] M. Bakkal, A.J. Shih, R.O. Scattergood, Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass, Int. Jour. of Mac. Tool and Man. 44 (2004) 915–925.

DOI: 10.1016/j.ijmachtools.2004.02.002

Google Scholar

[32] G. Boothroyd, WA Knight, Fundamentals of machining and machine tools, 2nd Ed., Dekker, New York, (1989).

Google Scholar

[33] M. Bakkal, A.J. Shih, R.O. Scattergood, C.T. Liu, Machining of a Zr-Ti-Al-Cu-Ni metallic glass, Scripta Materialia, 50 (2004) 583-588.

DOI: 10.1016/j.scriptamat.2003.11.052

Google Scholar

[34] S.A. Batzer, D.M. Haan, P.D. Rao, W.W. Olson, J.W. Sutherland, Chip morphology and hole surface texture in the drilling of cast aluminum alloys, Journal of Materials Processing Technology 79 (1998) 72–78.

DOI: 10.1016/s0924-0136(97)00324-5

Google Scholar

[35] S. Min, D.A. Dornfeld, Y. Nakao, Influence of exit surface angle on drilling burr formation, Journal of Manufacturing Science and Engineering 125 (2003) 637-644.

DOI: 10.1115/1.1596573

Google Scholar

[36] Kang, I.S.; Kim, J.S.; Kim, J.H.; Kang, M.C.; Seo, Y.W. A mechanistic model of cutting force in the micro endmilling process. Journal of Materials Processing Tech. 2007, 187–188, 250–255.

DOI: 10.1016/j.jmatprotec.2006.11.155

Google Scholar

[37] Altintas, Y. Manufacturing Automation; Cambridge University Press: Cambridge, (2000).

Google Scholar

[38] Budak, E.; Armarego, E.J.A.; Altintas, Y. Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering 1996, 118, 216–224.

DOI: 10.1115/1.2831014

Google Scholar

[39] Wan, M.; Zhang, W.H.; Tan, G.; Qin, G.H. New algorithm for calibration of instantaneous cutting-force coefficients and radial run-out parameters in flat endmilling. Journal of Engineering Manufacture 2007, 221 (6), 1007–1019.

DOI: 10.1243/09544054jem515

Google Scholar

[40] Oliveria, O.; Barrow, G. An experimental study of burr formation in square shoulder face milling. International Journal of Machine Tool and Manufacturing 1996, 36, 1005–1020.

DOI: 10.1016/0890-6955(96)00014-4

Google Scholar

[41] Bakkal, M.; Shih, A.J.; McSpadden, S.B.; Scattergood, R.O. Thrust force, torque, and tool wear in drilling of bulk metallic glass. Int. Jour. of Mac. Tool and Man. 2005, 45, 741–752.

DOI: 10.1016/j.ijmachtools.2004.11.005

Google Scholar

[42] Lee, K.; Dornfeld, D.A. Micro-burr formation and minimization through process control. Precision Engineering 2005, 29 (2), 246– 252.

DOI: 10.1016/j.precisioneng.2004.09.002

Google Scholar

[43] Chern, G.L., Wu, Y.J.E., Cheng, J.C., Yao, J.C. Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precision Engineering 2007, 31, 122–129.

DOI: 10.1016/j.precisioneng.2006.04.001

Google Scholar

[44] Kalpakjian, S.; Schmid, S.R. Manufacturing Process for Engineering Materials, 4th. Ed.; Prentice Hall: New Jersey, (2003).

Google Scholar

[45] S. Malkin, C. Guo, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial Press, New York, (2008).

Google Scholar

[46] X. Xu, S. Malkin, Comparison of methods to measure grinding temperature, Trans. ASME, J. of Manufact. Sci. And Eng. 123 (2001) 191-196.

Google Scholar

[47] B. Shen, G. Xiao, C. Guo, S. Malkin, A.J. Shih, Thermocouple fixation method for grinding temperature measurement, Journal of Manufacturing Science and Engineering 130 (2008) (051014, 1-8).

DOI: 10.1115/1.2976142

Google Scholar