Application of Electron Backscatter Diffraction to Shape Memory Alloys

Article Preview

Abstract:

This overview highlights very recent application of electron backscatter diffraction (EBSD) to shape memory alloys, as main investigation technique but also as ancillary technique for other characterization methods. Over the last two decades EBSD in the scanning electron microscope has become a powerful tool for the characterization of many materials and transformation. In the mean time, shape memory alloys (SMA) are continuously studied: from a theoretical point of view, in order to clarify unsolved fundamentals of their phase transformations and characterize or develop new SMA systems, and from an engineering point of view, to solve design and processing problems related to the continuously growing examples of applications. Application of EBSD to SMA, even if hindered by limitations generally found also in other metallic system when phase transformation and martensitic phases are involved, provided useful information for both research areas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-268

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Funakubo, H. (1987). Shape Memory Alloys. Amsterdam: Gordon and Breach Science Publishers.

Google Scholar

[2] Otsuka, K., Wayman, C., & editors. (1998). Shape memory materials. Cambridge: Cambridge University Press.

Google Scholar

[3] Sun, L., Huang, W., Ding, Z., Zhao, Y., Wang, C., Purnawali, H., et al. (2012). Stimulus-responsive shape memory materials: A review. Materials and Design, 33, 577-640.

DOI: 10.1016/j.matdes.2011.04.065

Google Scholar

[4] Mertmann, M., & Vergani, G. (2008). Design and application of shape memory actuators. Eur. Phys. J. Special Top. (158), 221-230.

DOI: 10.1140/epjst/e2008-00679-9

Google Scholar

[5] Machado, L., & Savi, M. (2003). Medical applications of shape memory alloys. Brazilian Journal of Medical and Biological Research, 36, 683-691.

DOI: 10.1590/s0100-879x2003000600001

Google Scholar

[6] Elahinia, M., Hashemi, M., Tabesh, M., & Bhaduri, S. (2012). Manufacturing and processing of NiTi implants: A review. Progress in Materials Science, 57, 911-946.

DOI: 10.1016/j.pmatsci.2011.11.001

Google Scholar

[7] Angioni, S., Meo, M., & Foreman, A. (2011). Impact damage resistance and damage suppression properties of shape memory alloys hybrid composites - A review. Smart Materials and Structures, 20, 013001(24pp).

DOI: 10.1088/0964-1726/20/1/013001

Google Scholar

[8] Pelton, A., Stoeckel, D., & T.W., D. (2000). Medical uses of Nitinol. Materials Science Forum, 327-328, 63-70.

DOI: 10.4028/www.scientific.net/msf.327-328.63

Google Scholar

[9] Feninat, F., Laroche, G., Fiset, M., & Mantovani, D. (2002). Shape memory materials for biomedical applications. Advanced Engineering Materials , 4, 91-104.

DOI: 10.1002/1527-2648(200203)4:3<91::aid-adem91>3.0.co;2-b

Google Scholar

[10] Otsuka, K., & Ren, X. (2005). Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science, 50, 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[11] Venables, J., & Harland, C. (1973). Phil. Mag., 27, 1193.

Google Scholar

[12] Dingley, D. (1984). Proc. Royal Mic. Soc., 19, 74.

Google Scholar

[13] Schwarzer, R. (1997). Automated Crystal Lattice Orientation Mapping Using a Computer-controlled SEM. Micron (28), 249-265.

DOI: 10.1016/s0968-4328(97)00010-3

Google Scholar

[14] Gourgues-Lorenzon, A. -F. (2009). Application of electron backscatter diffraction to the study of phase transformations: present and possible future. Journal of Microscopy, 233, 460-473.

DOI: 10.1111/j.1365-2818.2009.03130.x

Google Scholar

[15] Schwartz, A. J., Kumar, M., & Adams, B. L. (2009). Electron Backscattered Diffraction in Material Science - s. e. Spriger Science + Businness Media.

Google Scholar

[16] Randle, V. (2009). Electron backscatter diffraction: Strategies for reliable data acquisition and processing. Materials Characterization, 60, 913-922.

DOI: 10.1016/j.matchar.2009.05.011

Google Scholar

[17] Gourgues-Lorenzon, A. (2007). Application of electron backscatter diffraction to the study of phase transformations. Int. Materials Reviews, 52(2), 65-128.

DOI: 10.1179/174328007x160254

Google Scholar

[18] Humpreys, F. (2004). Characterisation of fine scale microstructures by electron backscattered diffraction (EBSD). Scripta Materialia, 771-776.

DOI: 10.1016/j.scriptamat.2004.05.016

Google Scholar

[19] Cayron, C. (2007). ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data. J. Appl. Crystallogr., 40, 1183-1188.

DOI: 10.1107/s0021889807048777

Google Scholar

[20] Pinard, P., Lagacé, M., Hovington, P., Thibault, D., & Gauvin, R. (2011). An Open-Source Engine for the Processing of Electron Backscatter Patterns: EBSD-Image. Microscopy and Microanalysis, 1-12.

DOI: 10.1017/s1431927611000456

Google Scholar

[21] Wilkinson, A., Clarke, E., Britton, T., Littlewood, P., & Karamched, P. (2010). High-resolution electron backscatter diffraction: an emerging tool for studying local deformation. Journal of Strain Analysis, 45, 365-376.

DOI: 10.1243/03093247jsa587

Google Scholar

[22] Hardin, T., Adams, B., & Fullwood, T. (2011). Recovering the full dislocation tensor from high-resolution EBSD microscopy. Advances in Heterogeneous Material Mechanics - ICHMM-(2011).

Google Scholar

[23] Cayron, C. (2011). Quantification of multiple twinning in face centred cubic materials. Acta Materialia, 59, 252-262.

DOI: 10.1016/j.actamat.2010.09.029

Google Scholar

[24] Koblinschka-Veneva, A., & Koblischka, M. (2008). Analysis of twin boundaries using the electron backscatter diffraction (EBSD) technique. Materials Science and Engineering B, 151, 60-64.

DOI: 10.1016/j.mseb.2008.02.009

Google Scholar

[25] Zhang, Y., Li, Z., Esling, C., Muller, J., Zhao, X., & Zuo, L. (2010). A general method to determine twinning elements. Applied Crystallography, 43, 1426-1430.

DOI: 10.1107/s0021889810037180

Google Scholar

[26] Chen, X., Gui, J., Wang, R., Wang, J., Liu, J., Chen, F., et al. (2000). Orientation relationship of martensite variants determined by electron backscatter diffraction. Micron, 31, 17-25.

DOI: 10.1016/s0968-4328(99)00060-8

Google Scholar

[27] Inoue, H., Ishio, M., & Takasugi, T. (2003). Texture of NiTi shape memory alloy sheets produced by roll-bonding and solid phase reaction from elementary metals. Acta Materialia, 51, 6373-6383.

DOI: 10.1016/j.actamat.2003.08.009

Google Scholar

[28] Wang, R., Gui, J., Chen, X., & Tan, S. (2002). EBSD and TEM study of self-accommodating martensites in Cu75. 7Al15. 4Mn8. 9 shape memory alloy. Acta materialia, 50, 1835-1847.

DOI: 10.1016/s1359-6454(02)00035-6

Google Scholar

[29] Kaouache, B., Berveiller, S., Inal, K., Eberhardt, A., & Patoor, E. (2004). Stress analysis of martensitic transformation in Cu-Al-Be polycrystalline and single-crystalline shape memory alloy. Materials Science and Engineering A, 378, 232-237.

DOI: 10.1016/j.msea.2003.10.348

Google Scholar

[30] Bruckner, G., Köntges, A., & Gottstein, G. (1999). Microstructure and texture development during the phase transformation in an Fe-Ni-Co-Ti shape memory alloy. Steel Research, 70, 188-192.

DOI: 10.1002/srin.199905624

Google Scholar

[31] Randle, V. (2009). Application of electron backscatter diffraction to materials science: status in 2009. J. Mater Sci., 44, 4211-4218.

DOI: 10.1007/s10853-009-3570-0

Google Scholar

[32] Petrov, R., Kestens, L., Wasilikowka, A., & Houbert, Y. (2007). Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique. Materials Science and Engineering A, 447, 285.

DOI: 10.1016/j.msea.2006.10.023

Google Scholar

[33] Wilson, A., & Spanos, G. (2001). Application of orientation imaging microscopy to study phase transformations in steels. Materials Characterization, 46, 407-418.

DOI: 10.1016/s1044-5803(01)00140-1

Google Scholar

[34] Hase, K., & Tsuji, N. (2011). Effect of initial microstructure on ultrafine grain formation through warm deformation in medium-carbon steels. Scripta Materialia, 65, 404-407.

DOI: 10.1016/j.scriptamat.2011.05.018

Google Scholar

[35] Koblischka-Veneva, A., Gachot, C., Leibenguth, P., & Mücklich, F. (2007). Investigation of microstructure of bulk Ni2MnGa alloy by means of electron backscatter diffraction analysis. Journal of Magnetism and Magnetic Materials, 316, e431-e434.

DOI: 10.1016/j.jmmm.2007.02.171

Google Scholar

[36] Li, H., Yin, F., Sawaguchi, T., Ogawa, K., Zhao, X., & Tsuzaki, K. (2008). Texture evolution analysis of warm-rolled Fe-28Mn-6Si-5Cr shape memory alloy. Materials Science and Engineering A, 494, 217-226.

DOI: 10.1016/j.msea.2008.05.013

Google Scholar

[37] Zhang, K. M., Zuo, J., Grosdidier, T., Gey, N., Weber, S., Yang, D. Z., et al. (2007).

Google Scholar

[38] Mao, S., Han, X., Luo, J., & Zhang, Z. (2005). Microstructure and texture evolution of ultra-thin TiNi hot-rolled sheets studied by automated EBSD. Materials Letters, 59, 3567-3571.

DOI: 10.1016/j.matlet.2005.06.029

Google Scholar

[39] Li, Z., Zhang, Y., Esling, C., Zhao, X., Wang, Y., & Zuo, L. (2010). New approach to twin interfaces of modulated martensite. Applied Crystallography, 43, 617-622.

DOI: 10.1107/s002188981000868x

Google Scholar

[40] Cong, D., Zhang, Y., Esling, C., Wang, Y., Lecomte, J., Zhao, X., et al. (2011).

Google Scholar

[41] Scheerbaum, N., Lai, Y., Leisegang, T., Thomas, M., Liu, J., Khlopkov, K., et al. (2010). Constraint-dependent twin variant distribution in Ni2MnGa single crystal, polycrystals and thin film: An EBSD study. Acta Materialia, 58, 4629-4638.

DOI: 10.1016/j.actamat.2010.04.030

Google Scholar

[42] Li, Z., Zhang, Y., Esling, C., Zhao, X., & Zuo, L. (2011). Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy. Acta Materialia, 59, 3390-3397.

DOI: 10.1016/j.actamat.2011.02.014

Google Scholar

[43] Basu, R., Jain, L., Maji, B., Krishnan, M., Mani Krishna, K., Samajdar, I., et al. (2012).

Google Scholar

[44] Rao, G., Wang, J., Han, E., & Ke, W. (2006). Study of residual stress accumulation in TiNi shape memory alloy during fatigue using EBSD technique. Materials Letters, 60, 779-782.

DOI: 10.1016/j.matlet.2005.10.023

Google Scholar

[45] Luo, J., Mao, S., Han, X., & Zhang, Z. (2007). Crystallographic mechanisms of fracture in a textured polycrystalline TiNi shape memory alloy. Journal of Applied Physics, 102, 043526.

DOI: 10.1063/1.2764215

Google Scholar

[46] Goryczka, T. (2009). Texture and structure of grain boundary in Ni-Ti strip produced by twin roll casting technique. Z. Kristallogr. Suppl., 30, 303-308.

DOI: 10.1524/zksu.2009.0044

Google Scholar

[47] Pötschke, M., Gaitzsch, U., Roth, S., Rellinghaus, B., & Schultz, L. (2007). Preparation of melt textured Ni-Mn-Ga. Journal of Magnetism an Magnetic Materials, 316, 383-385.

DOI: 10.1016/j.jmmm.2007.03.032

Google Scholar

[48] Koblinschka-Veneva, A., Koblischka, M., Schmauch, J., Mitra, A., & Panda, A. (2010).

Google Scholar

[49] Sturz, L., Drevermann, A., Hecht, U., Pagounis, E., & Laufenberg, M. (2010). Production and characterization of large single crystals made of ferromagnetic shape memory alloys Ni-Mn-Ga. Physics Procedia, 10, 81-86.

DOI: 10.1016/j.phpro.2010.11.079

Google Scholar

[50] Gugel, H., & Theisen, W. (2009). Microstructural investigations of laser welded dissimilar Nickel-Titanium-steel joints. ESOMAT 2009, (p.05009). DOI: 10. 1051/esomat/200905009.

DOI: 10.1051/esomat/200905009

Google Scholar

[51] Suresh, K., Kim, D., Bhaumik, S., & Suwas, S. (2012). Interrelation of grain boundary microstructure and texture in a hot rolled Ni-rich NiTi alloy. Scripta Materialia, 66, 602-605.

DOI: 10.1016/j.scriptamat.2012.01.016

Google Scholar

[52] Rodríguez, P., Ibarra, A., Iza-Mendia, A., Recarte, V., Pérez-Landazábal, J., San Juan, J., et al. (2004).

Google Scholar

[53] Cong, D., Zhang, Y., Esling, C., Wang, Y., Zhao, X., & Zuo, L. (2011). Modification of preferred martensitic variant distribution by high magnetic field annealing in an Ni-Mn-Ga alloy. Applied Crystallography, 44, 1033-1039.

DOI: 10.1107/s0021889811027671

Google Scholar

[54] Biswas, A., & Krishnan, M. (2010). Deformation Studies of Ni55Fe19Ga26 Ferromagnetic Shape Memory Alloy. Physics Procedia, 10, 105-110.

Google Scholar

[55] Maji, B., Krishnan, M., Hiwarkar, V., Samajdar I., & Ray, R. (2009). Development of texture and Microstructure During Cold Rolling and Annealing of a Fe-Based Shape Memory Alloy. Journal of Materials Engineering and Performance, 18(5-6), 588-593.

DOI: 10.1007/s11665-009-9428-4

Google Scholar

[56] Otubo, J., Mei, P., Koshimizu, S., Shinohara, A., & Suzuki, C. (1999).

Google Scholar

[57] Mao, S., Luo, J., Zhang, Z., Wu, M., Liu, Y., & Han, X. (2010). EBSD studies of the stress-induced B2-B19' martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Materialia, 58, 3357-3366.

DOI: 10.1016/j.actamat.2010.02.009

Google Scholar

[58] Pötschke, M., Weiss, S., Gaitzsch, U., Cong, D., Hürrich, C., Roth, S., et al. (2010). Magnetically resettable 0. 16% free strain in polycrystalline Ni-Mn-Ga plates. Scripta Materialia, 63, 383-386.

DOI: 10.1016/j.scriptamat.2010.04.027

Google Scholar

[59] Min, X., Sawaguchi, T., Zhang, X., & Tsuzaki, K. (2012). Reasons for incomplete shape recovery in polycrystalline Fe-Mn-Si shape memory alloys. Scripta Materialia, in press.

DOI: 10.1016/j.scriptamat.2012.03.015

Google Scholar

[60] Bassani, P., Giuliani, P., Tuissi, A., & Zanotti, C. (2009). Thermomechanical Properties of Porous NiTi Alloy Produced by SHS. JMEPEG, 18, 594-599.

DOI: 10.1007/s11665-009-9493-8

Google Scholar

[61] Toro, A., Zhou, F., Wu, M., Van Geertruyden, W., & Misiolek, W. (2009). Characterization of Non-Metallic Inclusions in Superelastic NiTi Tubes. JMEPEG, 18, 448-458.

DOI: 10.1007/s11665-009-9410-1

Google Scholar

[62] Verbeken, K., Van Caenegem, N., & Verhaege, M. (2008). Quantification of the amount of ε martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy by means of electron backscatter diffraction. Materials Science and Engineering A, 481-482, 471-475.

DOI: 10.1016/j.msea.2007.01.188

Google Scholar

[63] Verbeken, K., Van Caenegem, N., & Raabe, D. (2009). Identification of ε martensite in a Fe-based shape memory alloy by means of EBSD. Micron, 40, 151-156.

DOI: 10.1016/j.micron.2007.12.012

Google Scholar

[64] Lackmann, J., Regenspurger, R., Maxisch, M., Grundmeier, G., & Maier, H. (2010). Defect formation in thin polyelectrolyte films on polycrystalline NiTi substrates. Journal of the mechanical behavior of biomedical materials, 3, 436-445.

DOI: 10.1016/j.jmbbm.2010.03.008

Google Scholar

[65] Lackmann, J., Niendorf, T., Maxisch, M., Grundmeier, G., & Maier, H. (2011). High-resolution in-situ characterization of the surface evolution of a polycrystalline NiTi SMA under pseudoelastic deformation. Materials Characterization, 62, 298-303.

DOI: 10.1016/j.matchar.2010.12.008

Google Scholar

[66] Merzouki, T., Collard, C., Bourgeois, N., Ben Zineb, T., & Meraghni, F. (2010). Coupling between measured kinematic fields and multicrystal SMA. Mechanics of Materials, 42, 72-95.

DOI: 10.1016/j.mechmat.2009.09.003

Google Scholar

[67] Bourgeois, N., Meraghni, F., & Ben Zineb, T. (2010). Measurement of local strain heterogeneities in superelastic shape memory alloys by digital image correlation. Physics Procedia, 10, 4-10.

DOI: 10.1016/j.phpro.2010.11.066

Google Scholar

[68] Sekido, K., Ohmura T., Sawaguchi, T., Koyama , M., Park, H., & Tsuzaki, K. (2011). Nanoindentation/atomic force microscopy analyses of ε-martensitic transformation and shape memory effect in Fe-28Mn-6Si-5Cr alloy. Scripta Materialia, 65, 942-945.

DOI: 10.1016/j.scriptamat.2011.08.010

Google Scholar

[69] Pfetzing-Micklich, J., Ghisleni, R., Simon, T., Somsen, C., Michler, J., & Eggeler, G. (2012).

Google Scholar

[70] Delpueyo, D., Grédiac, M., Balandraud, X., & Badulescu, C. (2012). Investigation of martensitic microstructures in a monocrystalline Cu-Al-Be shape memory alloy with the grid method and infrared thermography. Mechanics of Materials, 45, 34-51.

DOI: 10.1016/j.mechmat.2011.09.007

Google Scholar

[71] Schaffer, J. (2009). Structure-Property Relationships in Conventional and Nanocrystalline NiTi Intermetallic Alloy Wire. JMEPEG, 18, 582-587.

DOI: 10.1007/s11665-009-9369-y

Google Scholar

[72] Gall, K., Lim, T., McDowell, D., Sehitoglu, H., & Chumlyakov, Y. (2000). The role of intergranular constrain on the stress-induced martensitic transformation in textured polycrystalline NiTi. International Journal of Plasticity, 16, 1189-1214.

DOI: 10.1016/s0749-6419(00)00007-3

Google Scholar

[73] Waitz, T., Kazykhanov, V., & Karnthaler, H. (2004). Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Materialia, 52, 137-147.

DOI: 10.1016/j.actamat.2003.08.036

Google Scholar

[74] Saburi, T., & Nenno, S. (1981). Proc. Int. Conf. on Solid -Solid Phase Transformations (p.1455). Pittsburgh: Met. Joc. AIME.

Google Scholar

[75] Inoue, H., Miwa, N., & Inakazu, N. (1996). Texture and shape memory strain in TiNi alloy sheets. Acta Mater., 44(12), 4825-4834.

DOI: 10.1016/s1359-6454(96)00120-6

Google Scholar

[76] Liu, Y., Xie, Z., Van Humbeeck, J., & Delaey, L. (1999). Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta mater., 47(2), 645-660.

DOI: 10.1016/s1359-6454(98)00376-0

Google Scholar

[77] Shu, Y., & Bhattacharya, K. (1998). The influence of texture on the shape memory effect in polycrystals. Acta Mater., 46(15), 5457-5473.

DOI: 10.1016/s1359-6454(98)00184-0

Google Scholar

[78] Gall, K., & Sehitoglu, H. (1999). The role of texture in tension-compression asymmetry in polycrystalline NiTi. International Journal of Plasticity, 15, 69-92.

DOI: 10.1016/s0749-6419(99)00020-0

Google Scholar

[79] Gall, K., Sehitoglu, H., Anderson, R., Karaman, I., Chumlykov, Y., & Kireeva, I. (2001).

Google Scholar

[80] Mao, S. C., Han, X., Tian, Y., Luo, J., Zhang, Z., Ji, Y., et al. (2008).

Google Scholar

[81] Niendorf, T., Lackmann, J., Gorny, B., & Maier, H. (2011). In situ characterization of martensite variant formation in nickel-titanium shape memory alloy under biaxial loading. Scripta Materialia, 65, 915-918.

DOI: 10.1016/j.scriptamat.2011.08.011

Google Scholar

[82] Robertson, S., Imbeni, V., Wenk, H., & Ritchie, R. (2004). Crystallographic texture for tube and plate of the superelastic/shape memory alloy Nitinol used for endovascular stents. Journal of Biomedical Materials.

DOI: 10.1002/jbm.a.30214

Google Scholar

[83] Pons, J., Cesari, E., Seguí, C., Masdeu, F., & Santamarta, R. (2008). Ferromagnetic shape memory alloys: alternatives to Ni-Mn-Ga. Materials Science and Engineering A, 481-482, 57-65.

DOI: 10.1016/j.msea.2007.02.152

Google Scholar

[84] Cong, D., Zhang, Y., Wang, Y., Humbert, M., Zhao, X., Watanabe, T., et al. (2007). Experiment and theoretical prediction of martensitic transformation crystallography in a Ni-Mn-Ga ferromagnetic shape memory alloy. Acta Materialia, 55, 4731-4740.

DOI: 10.1016/j.actamat.2007.04.045

Google Scholar

[85] Hürrich, C., Wendrock, H., Pötschke, M., Gaitzsch, U., Roth, S., Rellinghaus, B., et al. (2009). Analysis of Variant Orientation Before and After Compression in Polycrystalline Ni50Mn29Ga21 MSMA. JMEPEG, 18, 554-557.

DOI: 10.1007/s11665-009-9457-z

Google Scholar

[86] Sato, A., Chishima, E., Soma, E., & Mori, T. (1982). Shape memory effect in γ↔ε transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall., 30, 1177-1183.

DOI: 10.1016/0001-6160(82)90011-6

Google Scholar

[87] Kajiwara, S. (1999). Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Materials Science and Engineering A, 273-275, 67-88.

DOI: 10.1016/s0921-5093(99)00290-7

Google Scholar

[88] Otubo, J., Mei, P., de Lima, N., Morelli Serna, M., & Gallego, E. (2007).

Google Scholar

[89] Van Caenegem, N., Verbeken, K., Petrov, R., Van der Pers, N., & Houbaert, Y. (2008). Shape Recovery and ε-γ Transformation in Fe29Mn7Si5Cr SMA. Advances in Science and Technology, 59, 86-91.

Google Scholar

[90] Hosoda, H., Kinoshita, Y., Fului, Y., Inamura, T., Wakashima, K., Kim, H., et al. (2006).

Google Scholar

[91] Inamura, T., Kinoshita, Y., Kim, J., Kim, H., Hosoda, H., Wakashima, K., et al. (2006). Effect of {001}<110> texture on superelastic strain of Ti-Nb-Al biomedical shape memory alloys. Materials Science and Engineering A, 438-440, 865-869.

DOI: 10.1016/j.msea.2006.02.092

Google Scholar

[92] Ma, J., Karaman, I., Kockar, B., Maier, H., & Chumlyakov, Y. (2011). Severe plastic deformation of Ti74Nb26 shape memory alloys. Materials Science and Engineering A, 528, 7628-7635.

DOI: 10.1016/j.msea.2011.06.051

Google Scholar

[93] Cui, W., Guo, A., Zhou, L., & Liu, C. (2010). Crystal orientation dependence of Young's modulus in Ti-Nb-based β-titanium alloy. Technological Sciences, 53(6), 1513-1519.

DOI: 10.1007/s11431-010-3154-x

Google Scholar

[94] Clarke, A., Field, R., Dickerson, P., McCabe, R., Swadener, J., Hackenberg, R., et al. (2009). A microcompression study of shape-memory deformation in U-13at% Nb. Scripta Materialia, 60, 890-892.

DOI: 10.1016/j.scriptamat.2009.02.003

Google Scholar

[95] Clarke, A., Field, R., McCabe, R., Cady, C., Hackenberg, R., & Thoma, D. (2008). EBSD and FIB/TEM examination of shape memory effect deformation structures in U-14at% Nb. Acta Materialia, 56, 2638-2648.

DOI: 10.1016/j.actamat.2008.02.008

Google Scholar

[96] Tuissi, A., Bassani, P., & Passaretti, F. (2008).

Google Scholar