Synthesis of Mg2+ Incorporated Hydroxyapatite by Ion Implantation

Article Preview

Abstract:

Mg substituted hydroxyapatite (Mg-HA) has been reported to promote activity of osteoblast and inhibit function of osteoclast in vitro. Mg-HA was synthesized by ion implantation of Ca2+, P2+ and Mg2+ beams by using an electrostatic medium energy accelerator. Oxygen injection had a major role in the formation of HA on Ti substrate. The osteoblast cells spread and formed lamellae on the coating surfaces. But Mg2+ ion implanted HA had shown higher osteoblast cell count and higher protein activity. The presence of Mg in the coating had better osteoblast activity and differentiation. Implantation of Ca and P ions into Ti substrate to successfully form HA and subsequent Mg ion incorporation in this layer shows that medium energy ions are very helpful in increasing the tensile strengths drastically.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

114-118

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. V. Dorozhkin, Calcium orthophosphates, J. Mater. Sci. 42 (2007) 1061-1095.

Google Scholar

[2] N. B. Roberts, H. P. J. Walsh, L. Klenerman, S. A. Kelly, T. R. Helliwell, Determination of elements in human femoral bone using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry, J. Anal. Atom. Spectrom. 11 (1996).

DOI: 10.1039/ja9961100133

Google Scholar

[3] R. K. Rude, H. E. Gruber, Magnesium deficiency and osteoporosis: animal and human observations, J. Nutr. Biochem. 15 (2004) 710-716.

DOI: 10.1016/j.jnutbio.2004.08.001

Google Scholar

[4] S. Gomes, G. Renaudin, E. Jallot, J. M. Nedelec, Structural Characterization and Biological Fluid Interaction of Sol-Gel-Derived Mg-Substituted Biphasic Calcium Phosphate Ceramics, ACS Applied Materials & Interfaces 1 (2009) 505-513.

DOI: 10.1021/am800162a

Google Scholar

[5] E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior, J. Mater. Sci. Mater. Med. 19 (2008) 239-247.

DOI: 10.1007/s10856-006-0032-y

Google Scholar

[6] E. Rimini, Ion implantation: Basics to device fabrication. Boston: Kluwer Academic Publishers; 1995; 214.

Google Scholar

[7] K. H. Kim, R. Narayanan, T. R. Rautray, Surface modification of titanium for biomaterial applications, Nova publishers, USA, (2010).

Google Scholar

[8] T. R. Rautray, Characterization and analysis of gallstones and crystal growth of HA. National Institute of Technology, Rourkela, India: (Ph. D thesis, Unpublished). (2008).

Google Scholar

[9] T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami, K. Asaoka, Early bone formation around calcium ion implanted titanium inserted into rat tibia.J. Biomed. Mater. Res. 36 (1997) 131-136.

DOI: 10.1002/(sici)1097-4636(199707)36:1<131::aid-jbm16>3.0.co;2-l

Google Scholar

[10] M. T. Pham, W. Matz, H. Reuther, E. Richter, G. Steiner, S. Oswald, Ion beam sensitizing of titanium surfaces to hydroxyapatite formation, Surf. Coat. Technol. 128-129 (2000) 313-319.

DOI: 10.1016/s0257-8972(00)00593-4

Google Scholar

[11] S. Nayab, F. H. Jones, I. Olsen, Effects of calcium ion implantation on human bone cell interaction with titanium, Biomater. 26 (2005) 4717-4727.

DOI: 10.1016/j.biomaterials.2004.11.044

Google Scholar

[12] D. Krupa, J. Baszkiewicz, J. A. Kozubowski, A. Barcz, J. W. Sobczak, A. Biliński, M. Lewandowska-Szumieł, B. Rajchel, Effect of calcium ion implantation on the corrosion resistance and biocompatibility of titanium, Biomater. 22 (2001) 2139-2151.

DOI: 10.1016/s0142-9612(00)00405-1

Google Scholar

[13] M. T. Pham, H. Reuther, W. Matz, R. Mueller, G. Steiner, S. Oswald, I. Zyganov, Surface induced reactivity for titanium by ion implantation, J. Mater. Sci. Mater. Med. 11 (2000) 383–391.

DOI: 10.1023/a:1008938125348

Google Scholar

[14] H. Baumann, K. Bethge, G. Bilger, D. Jones, I. Symietz, Thin hydroxyapatite surface layers on titanium produced by ion implantation, Nucl. Instrum. Meth. B 196 (2002) 286-292.

DOI: 10.1016/s0168-583x(02)01298-3

Google Scholar

[15] A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, N. Roveri, Magnesium influence on hydroxyapatite crystallization, J. Inorgan. Biochem. 49 (1993) 69-78.

DOI: 10.1016/0162-0134(93)80049-f

Google Scholar

[16] I. Mayer, R. Schlam, J.D.B. Featherstone, Magnesium containing carbonate apatites, J. Inorg. Biochem. 66 (1997) 1-6.

DOI: 10.1016/s0162-0134(96)00145-6

Google Scholar

[17] T. R. Rautray, R. Narayanan, Tae-Yub Kwon, Kyo-Han Kim, Accelerator based synthesis of hydroxyapatite by MeV ion implantation, Thin Solid Films, 518 (2010) 3160-3163.

DOI: 10.1016/j.tsf.2009.08.044

Google Scholar

[18] E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior, J. Mater. Sci. Mater. Med. 19 (2008) 239-247.

DOI: 10.1007/s10856-006-0032-y

Google Scholar

[19] I. R. Gibson, W. Bonfield, Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J. Mater. Sci. Mater. Med. 13 (2002) 685-693.

Google Scholar

[20] L. Bertinetti, C. Drouet, C. Combes, C. Rey, A. Tampieri, S. Coluccia et al., Surface Characteristics of Nanocrystalline Apatites: Effect of Mg Surface Enrichment on Morphology, Surface Hydration Species, and Cationic Environments, Langmuir 25 (2009).

DOI: 10.1021/la804230j

Google Scholar