Simplification of the Synthesis Method for Silicon-Substituted Hydroxyapatite: A Raman Spectroscopy Study

Article Preview

Abstract:

The addition of silicon ions to hydroxyapatite (HA) provides a more inorganic bone-like chemical composition compared to stoichiometric HA. It is known to aid the bioactivity of the material and to improve the rates of osseointegration, osteoconduction and bone mineralisation. The literature, however, lacks detailed information regarding each step of the aqueous precipitation procedure to produce silicon-substituted HA (Si-HA). The current work utilised Raman spectroscopy at each stage of the aqueous precipitation method to determine how the silicate is incorporated into the HA structure when producing Si-HA. Raman spectra indicated that at the initial stages of the reaction the disilicate ion (Si2O76-) formed with the orthosilicate (SiO44-) ion becoming more dominant after sintering. The results demonstrated that the form of silicate in the Si-HA aqueous precipitation method can be tracked using Raman spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

94-99

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Leventouri, C.E. Bunaciu, V. Perdikatsis, Neutron powder diffraction studies of silicon-substituted hydroxyapatite, Biomaterials. 24 (2003) 4205-4211.

DOI: 10.1016/s0142-9612(03)00333-8

Google Scholar

[2] I.R. Gibson, S.M. Best, W. Bonfield, Chemical characterization of silicon-substituted hydroxyapatite, J. Biomed. Mater. Res. 44 (1999) 422-428.

DOI: 10.1002/(sici)1097-4636(19990315)44:4<422::aid-jbm8>3.0.co;2-#

Google Scholar

[3] E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield, Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study, Biomaterials. 26 (2005) 2947-2956.

DOI: 10.1016/j.biomaterials.2004.07.058

Google Scholar

[4] A. Aminian, M. Solati-Hashjin, A. Samadikuchaksaraei, F. Bakhshi, F. Gorjipour, A. Farzadi, F. Moztarzadeh, M. Schmücker, Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources, Ceram. Int. 37 (2011).

DOI: 10.1016/j.ceramint.2010.11.044

Google Scholar

[5] K.A. Hing, P.A. Revell, N. Smith, T. Buckland, Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds, Biomaterials. 27 (2006) 5014-5026.

DOI: 10.1016/j.biomaterials.2006.05.039

Google Scholar

[6] A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials. 24 (2003) 4609-4620.

DOI: 10.1016/s0142-9612(03)00355-7

Google Scholar

[7] S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, J. Biomed. Mater. Res. 62 (2002) 600-612.

DOI: 10.1002/jbm.10280

Google Scholar

[8] M. Markovic, B.O. Fowler, M.S. Tung, Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material, J. Res. Natl. Inst. Stand. Technol. 109 (2004) 553-568.

DOI: 10.6028/jres.109.042

Google Scholar

[9] A. Antonakos, E. Liarokapis, T. Leventouri, Micro-Raman and FTIR studies of synthetic and natural apatites, Biomaterials. 28 (2007) 3043-3054.

DOI: 10.1016/j.biomaterials.2007.02.028

Google Scholar

[10] S. Zou, J. Huang, S. Best, W. Bonfield, Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD, J. Mater. Sci. Mater. Med. 16 (2005) 1143-1148.

DOI: 10.1007/s10856-005-4721-8

Google Scholar

[11] K. Fukumi, J. Hayakawa, T. Komiyama, Intensity of Raman Band in Silicate Glasses, J. Non-Cryst. Solids. 119 (1990) 297-302.

DOI: 10.1016/0022-3093(90)90302-3

Google Scholar

[12] P. McMillan, Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy, Am. Min. 69 (1984) 622-644.

Google Scholar