Cytotoxicity and Cancer Detection Ability of the Luminescent Nanoporous Silica Spheres Immobilized with Folic Acid Derivative

Article Preview

Abstract:

Luminescent europium(III)-doped nanoporous silica spheres (Eu:NPS) were synthesized, and folic acid derivative (FA: folate N-hydroxysuccinimidyl ester) as targeting ligand for cancer cells was immobilized on the sphere through a mediation of 3-aminopropyltriethoxysilane (APTES). The ordered nanopores were preserved with the immobilization. The surface area decreased only with the APTES immobilization, suggesting that the FA was immobilized only on the outer surface of the nanopores. The photoluminescence of the spheres showed the characteristic peak due to interactions between the FA and Eu3+, and further the luminescence can be clearly detected by a fluorescent microscopy. The spheres were highly dispersed stability in cell culture medium to exhibit the nontoxic in the proliferation stage of Hela cancer cells and NIH3T3 fibroblasts, and specifically bindto the Hela cells. The binding and uptake spheres showed the intense luminescence. Thus, the luminescent FA-immobilized Eu:NPS spheres will exhibit the targeting and imaging abilities for cancer cells.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

630-635

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Brandon-Peppas, J. O. Blanchette, Nanoparticle and Targeted Systems for Cancer Therapy, Adv. Drug Delivery Rev. 56 (2004) 1649−659.

DOI: 10.1016/j.addr.2004.02.014

Google Scholar

[2] a) T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials, Bull. Chem. Soc. Jpn. 63 (1990).

DOI: 10.1246/bcsj.63.988

Google Scholar

[3] K. B. Yoon, Electron- and Charge-Transfer Reactions within Zeolites, Chem. Rev. 93 (1993) 321−339.

DOI: 10.1021/cr00017a015

Google Scholar

[4] K. Moller, T. Bein, Inclusion Chemistry in Periodic Mesoporous Hosts, Chem. Mater. 10 (1998) 2950−2963.

DOI: 10.1021/cm980243e

Google Scholar

[5] M. Ogawa, Organized molecular assemblies on the surfaces of inorganic solids- photofunctional inorganic-organic supramolecular systems, Ann. Rep. Sec. C 94 (1998) 209−257.

DOI: 10.1039/pc094209

Google Scholar

[6] A. Stein, B. J. Melde, R. C. Schroden, Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age, Adv. Mater. 12 (2000) 1403−1419.

DOI: 10.1002/1521-4095(200010)12:19<1403::aid-adma1403>3.0.co;2-x

Google Scholar

[7] B. J. Scott, G. Wirnsberger, G. D. Stucky, Mesoporous and mesostructured materials for optical applications, Chem. Mater. 13 (2001) 3140−3150.

DOI: 10.1021/cm0110730

Google Scholar

[8] M. Ogawa, Photoprocesses in mesoporous silicas prepared by a supramolecular templating approach, J. Photochem. Photobiol. C Photochem. Rev. 3 (2002) 129−146.

DOI: 10.1016/s1389-5567(02)00023-0

Google Scholar

[9] a) M. Tagaya and M. Ogaawa, Luminescence of tris(8-hydroxyquinoline)aluminum(III) (Alq3) adsorbed into mesoporous silica, Chem. Lett. 35 (2006).

Google Scholar

[10] a) J. L. Vivero-Escoto, I. I. Slowing, C. W. Wu, V. S. Y. Lin, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere, J. Am. Chem. Soc. 131 (2009).

DOI: 10.1021/ja900025f

Google Scholar

[11] a) M. Tagaya, T. Ikoma, T. Yoshioka, T. Motozuka, F. Minami, J. Tanaka, Efficient synthesis of Eu(III)-containing nanoporous silicas, Mater. Lett. 65 (2011).

DOI: 10.1016/j.matlet.2011.04.011

Google Scholar

[12] J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren, M. Lindn, Targeting of porous hybrid silica nanoparticles to cancer cells, ACS Nano 3 (2009) 197−206.

DOI: 10.1021/nn800781r

Google Scholar

[13] a) E. Ruiz-Hitzky, P. Aranda, M. Darder, M. Ogawa, Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes, Chem. Soc. Rev., 40 (2011).

DOI: 10.1039/c0cs00052c

Google Scholar

[14] V. Sokolova, M. Epple, Synthetic pathways to make nanoparticles fluorescent, Nanoscale, 3 (2011) 1957−(1962).

DOI: 10.1039/c1nr00002k

Google Scholar

[15] a) Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery, Small 6 (2010).

DOI: 10.1002/smll.200901403

Google Scholar

[16] J. F. Kukowska-Latallo, K. A. Candido, Z. Cao, S. S. Nigavekar, I. J. Majoros, T. P. Thomas, L. P. Balogh, M. K. Khan, J. R. Baker, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res. 65 (2005).

DOI: 10.1158/0008-5472.can-04-3921

Google Scholar

[17] H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hmamoto, K. Suzuki, M. Watanave, A water-soluble tetrazolium salt useful for colorimetric cell viability assay, Anal. Commun. 36 (1999) 47−50.

DOI: 10.1039/a809656b

Google Scholar

[18] N. Wan, J. Xu, T. Lin, X. Zhang, L. Xu, Energy transfer and enhanced luminescence in metal oxide nanoparticle and rare earth codoped silica, Appl. Phys. Lett. 92 (2008) 201109−201111.

DOI: 10.1063/1.2936842

Google Scholar

[19] E. J. Nassar, K. J. Ciuffi, S. J. L. Ribeiro, Y. Messaddeq, Europium incorporated in silica matrix obtained by sol-gel: luminescent materials, Mat. Res. 6 (2003) 557−562.

DOI: 10.1590/s1516-14392003000400023

Google Scholar

[20] M. A. Zaitoun, T. Kim, C. T. Lin, Observation of Electron-Hole Carrier Emission in the Eu3+-Doped Silica Xerogel, J. Phys. Chem. B 102 (1998) 1122−1125.

DOI: 10.1021/jp972536l

Google Scholar

[21] K. O. Yu, C. M. Grabinski, A. M. Schrand, R. C. Murdock, W. Wang, B. Gu, J. J. Schlager, S. M. Hussain, Toxicity of amorphous silica nanoparticles in mouse keratinocytes, J. Nanopart. Res. 11 (2009) 15−24.

DOI: 10.1007/s11051-008-9417-9

Google Scholar