Vapor-Liquid-Solid Growth of Silicon-Based Nanowires for High Sensitive Sensor

Article Preview

Abstract:

Silicon-based nanowires (Si-NWs) were fabricated by vapor liquid solid (VLS) growth, and Si-NW device was prototyped using focused ion beam (FIB) processing. The needle shaped thin Si-NWs were formed at a substrate temperature between 1120 and 1313°C. The average and minimum diameters of the NWs were confirmed 60 nm and 44 nm, respectively. As the double-layered structure was observed in the NWs by transmission electron microscope images, it is possible that those are silicon-based NWs with Si core and SiO2 shell structure. From current-voltage characteristics, the Si-NW device has a semiconducting property, and the estimated resistivity of the Si-NW is about 3.1 x 104 Ωcm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-261

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Sone, A. Ikeuchi, T. Izumi, H. Okano and S. Hosaka: Jpn. J. Appl. Phys. Vol. 45 (2006), p.2301.

Google Scholar

[2] S. Hosaka, T. Chiyoma, A. Ikeuchi, H. Okano, H. Sone and T. Izumi: Current Appl. Phys. Vol. 6 (2006), p.384.

DOI: 10.1016/j.cap.2005.11.024

Google Scholar

[3] H. Sone, S. Ichikawa, Y. Matsubara, M. Suzuki, H. Okano, T. Izumi, and S. Hosaka: Key Engineering Materials Vol. 459 (2011), p.134.

DOI: 10.4028/www.scientific.net/kem.459.134

Google Scholar

[4] G. -J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E. -J. A. Lim, T. G. Kang, and Y. Chen: Sens. Act. B Vol. 146 (2010), p.138.

Google Scholar

[5] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri: Prog. Mater. Sci. Vol. 54 (2009), p.1.

Google Scholar

[6] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda: J. Vac. Sci. Technol. B (1997), p.554.

Google Scholar

[7] Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. Lee, I. Bello, and S. T. Lee: J. Cryst. Growth Vol. 212 (2000), p.115.

Google Scholar

[8] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang: J. Phys. Chem. B Vol. 105 (2001), p.2507.

Google Scholar

[9] F. M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gösele, D. D. Ma, and S. -T. Lee: J. Electrochemical Soc. Vol. 151 (2004), p. G472.

Google Scholar

[10] P. Pignalosa, H. Lee, L. Qiao, M. Tseng, and Y. Yi: AIP Advances Vol. 1 (2011), 032124.

Google Scholar

[11] Y. Cui and C. M. Lieber: Science Vol. 291 (2001), p.851.

Google Scholar

[12] K. Byon, J. E. Fischer, K. W. Adu, and P. C. Eklund: Mater. Res. Soc. Symp. Vol. 832 (2005), F9. 9. 1.

Google Scholar

[13] M. -G. Kang, J. -H. Ahn, J. Lee, D. -H. Hwang, H. -T. Kim, J. -S. Rieh, D. Whang, M. -H. Son, D. Ahn, Y. -S. Yu, and S. -W. Hwang: Jpn. J. Appl. Phys. Vol. 49 (2010), 06GG12.

DOI: 10.1143/jjap.49.06gg12

Google Scholar