Effect of Metal Modification to Carbon Paper Anodes on the Performance of Yeast-Based Microbial Fuel Cells Part ΙΙ: In the Case with Exogenous Mediator, Methylene Blue

Article Preview

Abstract:

Effect of metal modification to carbon paper as the anode of mediator-aided yeast-based microbial fuel cell on the cell performance was investigated using methylene blue as an exogenous mediator. The modification was conducted using a sputtering technique by depositing Co or Au thin layer, 30 nm. The electrode performance was evaluated by measuring the electrode potentials and the fuel cell power output. The metal modification significantly increased the mediator-aided MFC performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Min and B.E. Logan: Environ. Sci. Technol. Vol. 38 (2004), p.5809.

Google Scholar

[2] D. Lovely: Curr. Opin. Biotechnol. Vol. 19 (2008), p.564.

Google Scholar

[3] H. Pham, P. Aelterman, and W. Verstraete,: Trends Biotechnol. Vol. 27 (2008), p.168.

Google Scholar

[4] A. Shukla1, P. Suresh, S. Berchmans1, A. Rajendran1: Current Science Vol. 87 (2004), p.455.

Google Scholar

[5] G. Reguera, K. McCarthy, T. Mehta, J. Nicoll, M. Tuominen and D.R. Lovley: Nature Vol. 435 (2005), p.1098.

DOI: 10.1038/nature03661

Google Scholar

[6] O. Schaetzle, F. Barrie`re and K. Baronian: Energy Environ. Sci. Vol. 1 (2008), p.607.

Google Scholar

[7] A. Guerrero, K. Scott, K. Katuri, C. Godinez, I. Head and T. Curtis: Appl. Microbiol. Biotechnol. Vol. 87 (2010), p.1699.

Google Scholar

[8] B.E. Logan: Microbial Fuel Cells (Wiley, New York 2007).

Google Scholar

[9] R. Ganguli and B.S. Dunn: Fuel Cell Vol. 9 (2009), p.44.

Google Scholar

[10] A. Walker and C. Walker, J. Power Sources Vol. 160 (2006), p.123.

Google Scholar

[11] A. Gunawardena, S. Fernando and F. To: Int. J. Mol. Sci. Vol. 9 (2008), p.1893.

Google Scholar

[12] M. Rahimnejad, G. Najafpour, A. Ghoreyshi, M. Shakeri and H. Zare: Intern. J. of Hydrogen Energy Vol. 36(2011), p.13335.

DOI: 10.1016/j.ijhydene.2011.07.059

Google Scholar

[13] E. Kasem, T. Tsujiguchi, and N. Nakagawa: J. Bioelectrochemistry (2012), doi: 10. 1016.

Google Scholar

[14] E. Kasem, T. Tsujiguchi, and N. Nakagawa: Key Engineering Materials, submitted.

Google Scholar

[15] R. Ganguli, and B.S. Dunn: J. Fuel Cell Vol. 9 (2009), p.44.

Google Scholar

[16] A. Walker and C. Walker : J. Power Sources Vol. 160 (2006), p.123.

Google Scholar

[17] S. Babanova, Y. Hubenova and M. Mitov: J. Bioscience and Bioengineering Vol. 112 (2011), p.379.

Google Scholar

[18] C. Varodi, D. Gligor and L. Muresan: Revue Roumaine de Chimie Vol. 52 (2007) p.81.

Google Scholar

[19] F. Zhao, B. Zeng and D. Pang: Electroanalysis Vol. 15 (2003) p.1060.

Google Scholar