Electrochemical Performance of V2O5 Nano-Porous Aerogel Film

Article Preview

Abstract:

Nano-porous V2O5 aerogel films were prepared by dip-coating vanadium oxide sol onto ITO substrate, using V2O5 powder, Benz alcohol, Isopropanol as precursor materials. The nano pores were characterized by scaning electron microscope (SEM). The electrochemical properties were investigated by chronopotenyiometry(CP) and cyclic voltammograms(CV). Results showed that this porous V2O5 aerogel film exhibited good cycling stability with initial discharge capacity of 143mAh/g and 128 mAh/g after 18 cycles, staying 89.5 % of the initial discharge capacity, at a charge/discharge current density of 200 mA/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-168

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Nazri, G.Pistoia, Lithium Batteries Science and Technology, Kluwer Academic, Boston, (2004)

Google Scholar

[2] M.Armond, J.M. Torosoon, Building better batteries, Nature. 451 (2008) 652-657.

Google Scholar

[3] Y.Liu, M.Clark, Q.F. Zhang, D.Yu.D, L.J. Liu, G.Z. Cao, V2O5 ano-electrodes with high power and energy densities for thin film li-ion batteries, Advanced Energy Materials, 1 (2011) 194-202.

DOI: 10.1002/aenm.201000037

Google Scholar

[4] Z.Chen, V.Augustyn, J.Wen, Y.W. Zhang, M.Q. Shen, B.Dunn, Y.F.Lu, High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites, Adv.Mater. 23 (2011) 791-795.

DOI: 10.1002/adma.201003658

Google Scholar

[5] W.Dong, J.S. Sakamoto, D.bruce, Electrochemical properties of vanadium oxide aerogels and aerogel nanocomposites, Sci.Technol.Adv.Mater. 26 (2003) 641-644.

Google Scholar

[6] X.Ren, Y.Jiang, P.Zhang, J.Liu, Q.Zhang, Preparation and electrochemical properties of V2O5 submicron-belts synthesized by a sol-gel H2O2 route, J.Sol-Gel Sci.Technol. 51 (2009) 133-138.

DOI: 10.1007/s10971-009-2002-6

Google Scholar

[7] C.M. Ban, N.A. Chernova, M.S. Whittingham, Electrospun nano-vanadum pentoxide cathode, Electrochem.Commun. 11 (2009) 522-525.

DOI: 10.1016/j.elecom.2008.11.051

Google Scholar

[8] C.K. Chan, H.L. Peng, R.D. Twesten, K.Jarausch, X.F. Zhang, Y.Cui, Fast completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett. 7 (2007) 490-495.

DOI: 10.1021/nl062883j

Google Scholar

[9] G.M. Pajonk, Catalytic aerogels, Catal.Taday, 35 (1997) 319-337.

Google Scholar

[10] E.Nappi, Aerogel and its application to rich detectors, Nucl.Phys.B. 61 (1998) 270-276.

Google Scholar

[11] K.Xiao, G.Wu, J.Shen, D.Xie, B.Zhou ,Preparation and electrochemical properties of vanadium pentoxide aerogel film derived at the ambient pressure, Materials Chemistry and Physics, 100 (2006) 26-30.

DOI: 10.1016/j.matchemphys.2005.11.037

Google Scholar

[12] P.Bruce, B.Scrosati, J.Tarascon, Nanomaterials for Rechargeable Lithium Batteries, Angew.Chem.Int.Ed. 47 (2008) 2930-2946.

DOI: 10.1002/anie.200702505

Google Scholar

[13] M.A. Carreon, V.V. Guliants, Macroporous Vanadium Phosphorus Oxide Phases Displaying Three-Dimensional Arrays of Spherical Voids, Chem.Mater. 14 (2002) 2670-2675.

DOI: 10.1021/cm0117376

Google Scholar

[14] N.Ozer, Electrochemical properties of sol-gel deposited vanadium pentoxide films. Thin Solid Films. 305 (1997) 80-87.

DOI: 10.1016/s0040-6090(97)00086-2

Google Scholar

[15] L.Kavan, K.Kratochilova, M.Gratzel, Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime, J.Electroanal.Chem.Soc. 394 (1995) 93-102

DOI: 10.1016/0022-0728(95)03976-n

Google Scholar