The Study of Microcrystalline Silicon Thin Films Prepared by PECVD

Article Preview

Abstract:

Under different growth conditions, microcrystalline silicon thin films are deposited successfully on glass substrates by the double-frequency plasma enhanced chemical vapor deposition (PECVD). We report the systematic investigation of the effect of process parameters (hydrogen dilution, substrate temperature, forward power, reaction pressure, et al.) on the growth characteristics of microcrystalline silicon thin films. Raman scattering spectra are used to analyze the crystalline condition of the films and the experimental results. Optimizing the process parameters, the highest crystalline volume fraction of microcrystalline silicon films was achieved. It is found that the crystalline volume fraction of microcrystalline silicon films reaches 72.2% at the reaction pressure of 450 Pa, H2/SiH4 flow ratio of 800sccm/10sccm, power of 400 W and substrate temperature of 350 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-200

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Street, Thin-Film Transistors, Adv. Mater. 21 (2009) 2007–(2022)

Google Scholar

[2] D. Knipp, R.A. Street, H. Stiebig, et al., Vertically Integrated Amorphous Silicon Color Sensor Arrays, IEEE Trans.Electron. 53 (2006) 1551-1558.

DOI: 10.1109/ted.2006.875822

Google Scholar

[3] Y. Mai, S. Klein, R. Carius, et al., Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers, Appl. Phys. Lett. 87 (2005) 1-3.

DOI: 10.1063/1.2011771

Google Scholar

[4] S. Klein, F. Finger, R. Carius, et al., Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells, Thin Solid Films. 430 (2003) 202-207.

DOI: 10.1016/s0040-6090(03)00111-1

Google Scholar

[5] H. Jia, H. Shirai, In Situ Study On the Growth of Microcrystalline Silicon Film Using the High-Density Microwave Plasma for Si Thin Film Solar Cells, Thin Solid Films. 506 (2006) 27-32.

DOI: 10.1016/j.tsf.2005.08.030

Google Scholar

[6] Y. Sakuma, L. Haiping, H. Ueyama, et al., High-Density Microwave Plasma for High-Rate and Low-Temperature Deposition of Silicon Thin Film, Vacuum 59 (2000) 266-276.

DOI: 10.1016/s0042-207x(00)00279-7

Google Scholar

[7] L.H. Guo, R.M. Lin, Studies on the formation of microcrystalline silicon with PECVD under low and high working pressure, Thin Solid Films. 376 (2000) 249-254.

DOI: 10.1016/s0040-6090(00)01210-4

Google Scholar

[8] P.Roca i Cabarrocas, R.Brenot, P.Bulkin, et al., Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique, J. Appl. Phys. 86 (1999) 7079-7082.

DOI: 10.1063/1.371795

Google Scholar

[9] E.Amanatides, D. Mataras and D.E. Rapakoulias, Deposition rate optimization in SiH4/H2 PECVD of hydrogenated microcrystalline silicon, Thin Solid Films. 383 (2001) 15-18.

DOI: 10.1016/s0040-6090(00)01603-5

Google Scholar

[10] R.Platz and S.Wagner, Intrinsic microcrystalline silicon by plasma-enhanced chemical vapor deposition from dichlorosilane, Appl. Phys. Lett. 73 (1998) 1236-1238.

DOI: 10.1063/1.122138

Google Scholar

[11] J. K. Rath, R. H. Franken, A. Gordijn, and R. E. Schropp, et al., Growth mechanism of microcrystalline silicon at high pressure conditions, J. Non Cryst. Solids. 338 (2004) 56-60.

DOI: 10.1016/j.jnoncrysol.2004.02.021

Google Scholar

[12] V. G. Golubev, V. Y. Davydov, A. V. Medvedev, and A. B. Pevtsov, et al., Raman scattering spectra and electrical conductivity of thin silicon films with a mixed amorphous-nanocrystalline phase composition: determination of the nanocrystalline volume fraction, Phys. Solid State. 39 (1997) 1197-1201.

DOI: 10.1134/1.1130042

Google Scholar