Annealing Effect on Reversible Photochromic Properties of Ag@TiO2 Nanocomposite Film

Article Preview

Abstract:

Large-scale uniform Ag@TiO2 films was prepared by RF magnetron sputtering in pure Ar plasma using polycrystalline TiO2 semiconductor sintered target. The effect of annealing on the photochromic properties was studied to obtain a better understanding of the interaction of the structure. Ultraviolet-visible absorption and scanning electron microscopy were performed to investigate the possibility of tailoring the structure with consequent modification of the optical properties. Ag nanoparticles were formed between TiO2 films after annealing the samples with Ag film structure. The annealed Ag@TiO2 films present a photochromic property in comparison with the as-prepared samples. Such nanocomposite films can be used as smart windows, high density multiwavelength optical memory and rewritable electronic paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-204

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ito, T. Takeuchi, T. Katayama, et al. Conductive and transparent multilayer films for low- temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells. Chem. Mater.,15(2003):2824-2828.

DOI: 10.1021/cm021051t

Google Scholar

[2] A. Romanyuk and P. Oelhafen. Formation and electronic structure of TiO2-Ag interface. Sol. Energy Mater. Sol. Cells,91(2007):1051-1054.

DOI: 10.1016/j.solmat.2007.02.016

Google Scholar

[3] L. Z. Zhang, J. C. Yu, H. Y. Yip, et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir,19(2003):10372-10380.

DOI: 10.1021/la035330m

Google Scholar

[4] K. Naoi, Y. Ohko and T. Tatsuma. TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. J. Am. Chem. Soc.,126(2004):3664-3668.

DOI: 10.1021/ja039474z

Google Scholar

[5] L. L. Bao, S. M. Mahurin and S. Dai. Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering measurement. Anal. Chem.,76(2004):4531-4536.

DOI: 10.1021/ac049668c

Google Scholar

[6] K. Kawahara, K. Suzuki, Y. Ohka, et al. Electron transport in silver-semiconductor nano- composite films exhibiting multicolor photochromism. Phys. Chem. Chem. Phys.,7 (2005): 3851-3855.

DOI: 10.1039/b511489f

Google Scholar

[7] K. L. Kelly and K. Yamashita. Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior. J. Phys. Chem. B,110 (2006): 7743-7749.

DOI: 10.1021/jp0550917

Google Scholar

[8] J. Okumu, C. Dahmen, A. N. Sprafke, M. Luysberg, G. von Plessen and M. Wuttig. Photochromic silver nanoparticles fabricated by sputter deposition. J. Appl. Phys.,97(2005):094305.

DOI: 10.1063/1.1888044

Google Scholar

[9] C. Y. Wang, C. Y. Liu, X. B. Yan, et al. Investigation on the behavior of porphyrins at the surface of the colloidal silver particles. J. Photochem. Photobiol., A,104(1997):159-163.

Google Scholar

[10] L. Armelao, D. Barreca, G. Bottaro, et al. Rational Design of Ag/TiO2 Nanosystems by a Combined RF-Sputtering/Sol-Gel Approach. ChemPhysChem,10(2009):3249-3259.

DOI: 10.1002/cphc.200900571

Google Scholar

[11] J. Zuo, P. Keil, G. Grundmeier. Synthesis and Characterization of photochromic Ag-embedded TiO2 nanocomposite thin films by non-reactive RF-magnetron sputter deposition. Appl. Surf. Sci.,258 (2012): 7231-7237.

DOI: 10.1016/j.apsusc.2012.04.054

Google Scholar

[12] H. B. Liao, R. F. Xiao, J. S. Fu, et al. Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl. Phys. Lett.,70(1997):1-3.

DOI: 10.1063/1.119291

Google Scholar

[13] J. Zuo. Deposition of Ag nanostructures on TiO2 thin films by RF magnetron sputtering. Appl. Surf. Sci.,256(2010):7096-7101.

DOI: 10.1016/j.apsusc.2010.09.032

Google Scholar

[14] Q. Q. Wang, S. F. Wang, W. T. Hang and Q. H. Gong. Optical resonant absorption and third-order nonlinearity of (Au,Ag)-TiO2 granular composite films. J. Phys. D: Appl. Phys.,38(2005):389-391.

DOI: 10.1088/0022-3727/38/3/006

Google Scholar

[15] R. J. Martin-Palma and J. M. Martinez-Duart. Ni-Cr passivation of very thin Ag films for low- emissivity multilayer coatings. J. Vac. Sci. Technol., A,17(1999):3449-3451.

DOI: 10.1116/1.582081

Google Scholar

[16] R. C. Ross, R. Sherman, R. A. Bunger and S. J. Nadel. Plasma Oxidation of Silver and Zinc in Low- Emissivity Stacks. Solar Energy Materials,19(1989):55-65.

DOI: 10.1016/0165-1633(89)90023-3

Google Scholar

[17] D. Barreca, A. Gasparotto, E. Tondello, et al.. Influence of process parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering. J. Appl. Phys.,96 (2004): 1655-1665.

DOI: 10.1063/1.1766083

Google Scholar