[1]
S. Ito, T. Takeuchi, T. Katayama, et al. Conductive and transparent multilayer films for low- temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells. Chem. Mater.,15(2003):2824-2828.
DOI: 10.1021/cm021051t
Google Scholar
[2]
A. Romanyuk and P. Oelhafen. Formation and electronic structure of TiO2-Ag interface. Sol. Energy Mater. Sol. Cells,91(2007):1051-1054.
DOI: 10.1016/j.solmat.2007.02.016
Google Scholar
[3]
L. Z. Zhang, J. C. Yu, H. Y. Yip, et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir,19(2003):10372-10380.
DOI: 10.1021/la035330m
Google Scholar
[4]
K. Naoi, Y. Ohko and T. Tatsuma. TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. J. Am. Chem. Soc.,126(2004):3664-3668.
DOI: 10.1021/ja039474z
Google Scholar
[5]
L. L. Bao, S. M. Mahurin and S. Dai. Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering measurement. Anal. Chem.,76(2004):4531-4536.
DOI: 10.1021/ac049668c
Google Scholar
[6]
K. Kawahara, K. Suzuki, Y. Ohka, et al. Electron transport in silver-semiconductor nano- composite films exhibiting multicolor photochromism. Phys. Chem. Chem. Phys.,7 (2005): 3851-3855.
DOI: 10.1039/b511489f
Google Scholar
[7]
K. L. Kelly and K. Yamashita. Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior. J. Phys. Chem. B,110 (2006): 7743-7749.
DOI: 10.1021/jp0550917
Google Scholar
[8]
J. Okumu, C. Dahmen, A. N. Sprafke, M. Luysberg, G. von Plessen and M. Wuttig. Photochromic silver nanoparticles fabricated by sputter deposition. J. Appl. Phys.,97(2005):094305.
DOI: 10.1063/1.1888044
Google Scholar
[9]
C. Y. Wang, C. Y. Liu, X. B. Yan, et al. Investigation on the behavior of porphyrins at the surface of the colloidal silver particles. J. Photochem. Photobiol., A,104(1997):159-163.
Google Scholar
[10]
L. Armelao, D. Barreca, G. Bottaro, et al. Rational Design of Ag/TiO2 Nanosystems by a Combined RF-Sputtering/Sol-Gel Approach. ChemPhysChem,10(2009):3249-3259.
DOI: 10.1002/cphc.200900571
Google Scholar
[11]
J. Zuo, P. Keil, G. Grundmeier. Synthesis and Characterization of photochromic Ag-embedded TiO2 nanocomposite thin films by non-reactive RF-magnetron sputter deposition. Appl. Surf. Sci.,258 (2012): 7231-7237.
DOI: 10.1016/j.apsusc.2012.04.054
Google Scholar
[12]
H. B. Liao, R. F. Xiao, J. S. Fu, et al. Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl. Phys. Lett.,70(1997):1-3.
DOI: 10.1063/1.119291
Google Scholar
[13]
J. Zuo. Deposition of Ag nanostructures on TiO2 thin films by RF magnetron sputtering. Appl. Surf. Sci.,256(2010):7096-7101.
DOI: 10.1016/j.apsusc.2010.09.032
Google Scholar
[14]
Q. Q. Wang, S. F. Wang, W. T. Hang and Q. H. Gong. Optical resonant absorption and third-order nonlinearity of (Au,Ag)-TiO2 granular composite films. J. Phys. D: Appl. Phys.,38(2005):389-391.
DOI: 10.1088/0022-3727/38/3/006
Google Scholar
[15]
R. J. Martin-Palma and J. M. Martinez-Duart. Ni-Cr passivation of very thin Ag films for low- emissivity multilayer coatings. J. Vac. Sci. Technol., A,17(1999):3449-3451.
DOI: 10.1116/1.582081
Google Scholar
[16]
R. C. Ross, R. Sherman, R. A. Bunger and S. J. Nadel. Plasma Oxidation of Silver and Zinc in Low- Emissivity Stacks. Solar Energy Materials,19(1989):55-65.
DOI: 10.1016/0165-1633(89)90023-3
Google Scholar
[17]
D. Barreca, A. Gasparotto, E. Tondello, et al.. Influence of process parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering. J. Appl. Phys.,96 (2004): 1655-1665.
DOI: 10.1063/1.1766083
Google Scholar