Electrochemically Reduced Graphene Oxide Film Modified Electrode for Detection of Hydrogen Peroxide

Article Preview

Abstract:

A novel electrochemical method was proposed for detection of hydrogen peroxide (H2O2) based on electrochemical reduction of graphene oxide (GO) modified glassy carbon electrode (GCE). The electrochemically reduced graphene oxide (RGO) was characterized using cyclic voltammetry (CV). Under the optimized conditions, the RGO modified GCE showed much wide linear range for H2O2 from 2.0 to 600 M with the detection limit of 0.67 M (S/N = 3). The proposed method is simple, low-cost and convenient and will be a promising alternative for H2O2 sensing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-168

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, Y. Lin and L. Chen, Analyst 118 (1993) 477-483.

Google Scholar

[2] E. C. Hurdis and H. Romeyn, Jr., Anal. Chem. 26 (1954) 320-325.

Google Scholar

[3] C. Matsubara, N. Kawamoto and K. Takamura, Analyst 117 (1992) 1781-1784.

Google Scholar

[4] N. Yamashiro, S. Uchida, Y. Satoh, Y. Morishima, H. Yokoyama, T. Satoh, J. Sugama and R. Yamada, J. Nucl. Sci. Technol. 41 (2004) 890-897.

DOI: 10.3327/jnst.41.890

Google Scholar

[5] S. Q. Liu and H. X. Ju, Anal. Biochem. 307 (2002) 110-116.

Google Scholar

[6] A. K. Geim, K. S. Novoselov, Nat. Mater. 6 (2007) 183-191.

Google Scholar

[7] S. F. Hou, M. L. Kasner, S. J. Su, K. Patel, R. Cuellari, J. Phys. Chem. C 114 (2010) 14915-14921.

DOI: 10.1021/jp1020593

Google Scholar

[8] Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, H. Kim, Biosens. Bioelectron. 25 (2010) 2366-2369.

Google Scholar

[9] M. Zhou, Y. M. Zhai, S. J. Dong, Anal. Chem. 81 (2009) 5603-5613.

Google Scholar

[10] G. P. Keeley, A. O'Neill, N. McEvoy, N. Peltekis, J. N. Coleman, G. S. Duesberg, J. Mater. Chem. 20 (2010) 7864-7869.

Google Scholar

[11] Y. Fan, J. H. Liu, H. T. Lu, Q. Zhang, Microchim. Acta 173 (2011) 241-247.

Google Scholar

[12] X. H. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, Y. H. Lin, Biosens. Bioelectron. 25 (2009) 901-905.

Google Scholar

[13] J. Zhang, J. P. Lei, R. Pan, Y. D. Xue, H. X. Ju, Biosens. Bioelectron. 26 (2010) 371-376.

Google Scholar

[14] W .S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 80 (1958) 1399-1339.

Google Scholar

[15] M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. Wang, S. J. Dong, Chem. Eur. J. 15 (2009) 6116-6120.

Google Scholar

[16] L. N. Wu, X. J. Zhang, H. X. Ju, Analyst 132 (2007) 406-408.

Google Scholar

[17] J. You, W. P. Ding, S. J. Ding, H. X. Ju, Electroanalysis 21 (2009) 190-195.

Google Scholar