Doping Effect of Alkali Ions on the Microstructural and Electrical Properties of ZnO-Pr6O11-Based Varistor Ceramics

Article Preview

Abstract:

The microstructural and electrical properties of ZnO-Pr6O11-based ceramics fabricated with 97.5mol% ZnO + 0.5mol% Pr6O11 + 1.0mol% Co3O4 + 0.5mol% Cr2O3 + 0.5mol% MNO3 (M=Li, Na, K, or Rb) were investigated. Scanning electron microscopy analysis revealed that the doping of alkali ions would inhibit the growth of ZnO grains in the as-prepared ZnO-Pr6O11-based ceramics, in which the addition of K+ ion showed the strongest effect. Through the analysis of electric field vs current density characteristics, it was found that the doping of Li+ ion into ZnO-Pr6O11-based ceramics would change the varistor into ohmic resistor, but the addition of Na+, K+ or Rb+ ion could improve the nonlinearity of the varistors, in which the addition of K+ ion resulted in the strongest improving effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-218

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc. 73 (1990) 1817-1840.

Google Scholar

[2] S. Fujitsu, H. Toyoda, H. Yanagida, Origin of ZnO varistor, J. Am. Ceram. Soc. 70 (1987) C71-C72.

Google Scholar

[3] Y.S. Lee, T.Y. Tseng, Phase identification and electrical properties in ZnO-glass varistors, J. Am. Ceram. Soc. 75 (1992) 1636-1640.

DOI: 10.1111/j.1151-2916.1992.tb04236.x

Google Scholar

[4] K. Mukae, Zinc-oxide varistors with praseodymium oxide, Ceram. Bull. Vol. 66 (1987) 1329-1331.

Google Scholar

[5] H. Feng, Z.J. Peng, X.L. Fu, et al, Effect of TiO2 doping on microstructural and electrical properties of ZnO–Pr6O11-based varistor ceramics, J. Alloys compd. 497 (2010) 304-307.

DOI: 10.1016/j.jallcom.2010.03.047

Google Scholar

[6] H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of praseodymium- doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4, J. Mater Sci. 37 (2002) 1143-1154.

Google Scholar

[7] C.W. Nahm, Influence of cobalt oxide addition on electrical properties of ZnO-Pr6O11-based varistor ceramics, J. Mater. Sci. 40 (2005) 1265-1267.

DOI: 10.1007/s10853-005-6948-7

Google Scholar

[8] S.S. Lin, J.G. Lu, Z.Z. Ye, et al, p-type behavior in Na-doped ZnO films and ZnO homo junction light-emitting diodes, Solid State Commun. 148 (2008) 25-28.

DOI: 10.1016/j.ssc.2008.07.028

Google Scholar

[9] C.W. Nahm, Microstructure and electrical properties of Tb-doped zinc oxide-based ceramics, J. Non-Crystall. Solids 353 (2007) 2954-2957.

DOI: 10.1016/j.jnoncrysol.2007.06.041

Google Scholar

[10] B.S. Skidan, M.M. M'int, Effect of metal oxides on the microstructure of Zinc ceramic, Glass and Ceramics 64 (2007) 31-33.

DOI: 10.1007/s10717-007-0008-5

Google Scholar

[11] T. Watari, R.C. Bradt, Grain growth of sintered ZnO with alkali oxide additions, J. Ceram. Soc. Jap. 101 (1993) 1085-1089.

DOI: 10.2109/jcersj.101.1085

Google Scholar

[12] A. Yavuz Oral, Z. Banu Bahsi, M. Hasan Aslan, Microstructure and optical properties of nano crystalline ZnO and ZnO: (Li or Al) thin films, Appl. Surf. Sci. 253 (2007) 4593-4598.

DOI: 10.1016/j.apsusc.2006.10.015

Google Scholar

[13] L.G. Yu, G.M. Zhang, X.Y. Zhao, et al, Fabrication of lithium-doped zinc oxide film by anodic oxidation and its ferroelectric behavior, Mater. Res. Bull. 44 (2009) 589-593.

DOI: 10.1016/j.materresbull.2008.07.003

Google Scholar

[14] E.C. Lee, K.J. Chang, p-type doping with group-I elements and hydrogenation effect in ZnO, Physica B 376-377 (2006) 707-710.

DOI: 10.1016/j.physb.2005.12.177

Google Scholar

[15] C.W. Nahm, Effect of sintering temperature electrical properties of ZNR doped with Pr–Co–Cr–La, Ceram. Intl. 34 (2008) 1521-1525.

DOI: 10.1016/j.ceramint.2007.04.014

Google Scholar

[16] J. A. Park, Effect of Al2O3 on the electrical properties of ZnO-Pr6O11-based varistor ceramics, Physica B 403 (2008) 639-643.

DOI: 10.1016/j.physb.2007.09.068

Google Scholar