A Review of the Influential Factors on the Ferroelectric Domain Structure in BiFeO3 Thin Films

Article Preview

Abstract:

BiFeO3 is a very promising multiferroic materials, which can present ferroelectric and antiferromagnetic properties at room temperature (Tn=643 K, Tc= 1103 K). Ferroelectric domains in BiFeO3 thin films have attracted much attention due to their potential applications in memory devices. The aim of this paper is to review the main factors which can influence the ferroelectric domain structure in BiFeO3 thin films, including substrate, doping and film thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-225

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J.B. Neaton, H. Zheng, et al, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003) 1719-1722.

Google Scholar

[2] A. FiIippetti, N.A. Hill, First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite, J. Magn. Magn. Mater. 236 (2001) 176-189.

DOI: 10.1016/s0304-8853(01)00445-0

Google Scholar

[3] K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders, Advances in Physics 58 (2009) 321-448.

DOI: 10.1080/00018730902920554

Google Scholar

[4] D.Y. Wang, N.Y. Chan, R.K. Zheng et al, Multiferroism in orientational engineered (La, Mn) co-substituted BiFeO3 thin films, J. Appl. Phys. 109 (2011) 114105.

DOI: 10.1063/1.3594745

Google Scholar

[5] T. Rojac, M. Kosec, B. Budic, et al, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. Appl. Phys. 108 (2010) 074107.

DOI: 10.1063/1.3490249

Google Scholar

[6] V. Shelke, D. Mazumdar, G. Srinivasan, et al, Reduced coercive field in BiFeO3 thin films through domain engineering, Adv. Mater. 23 (2011) 669-672.

DOI: 10.1002/adma.201000807

Google Scholar

[7] X. Ke, P.P. Zhang, S.H. Baek, et al, Magnetic structure of epitaxial multiferroic BiFeO3 films with engineered ferroelectric domains, Phys. Rev. B. 82 (2010) 134448.

Google Scholar

[8] S. -H. Baek, C. M. Folkman, J. -W. Park, et al, The nature of polarization fatigue in BiFeO3, Adv. Mater. 23 (2011) 1621-1625.

DOI: 10.1002/adma.201003612

Google Scholar

[9] J. Seidel, P. Maksymovych, Y. Batra, et al, Domain wall conductivity in La-Doped BiFeO3, Phys. Rev. Lett. 105 (2010) 197603.

Google Scholar

[10] P. Maksymovych, J. Seidel, Y.H. Chu, Dynamic conductivity of ferroelectric domain walls in BiFeO3, Nano Lett. 11 (2011) 1906-(1912).

DOI: 10.1021/nl104363x

Google Scholar

[11] S. Farokhipoor, B. Noheda, Conduction through 71° domain walls in BiFeO3 thin films, Phys. Rev. Lett. 107 (2011) 127601.

DOI: 10.1103/physrevlett.107.127601

Google Scholar

[12] C.T. Nelson, Y. Zhang, C.M. Folkman, et al, Domain structure control of BiFeO3 films through substrate symmetry & film thickness, Microsc. Microanal. 15(Suppl 2) (2009) 1030-1031.

DOI: 10.1017/s1431927609099450

Google Scholar

[13] Y.H. Chu, L.W. Martin, Q. Zhan, et al, Epitaxial multiferroic BiFeO3 thin films: progress and future directions, Ferroelectrics 354 (2007) 167-177.

DOI: 10.1080/00150190701454867

Google Scholar

[14] L. You, S. Yasui, Y. Ehara, et al, Domain tuning in mixed-phase BiFeO3 thin films using vicinal substrates, Appl. Phys. Lett. 100 (2012) 202901.

DOI: 10.1063/1.4717986

Google Scholar

[15] Y.B. Chen, M.B. Katz, X.Q. Pan, et al, Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films, Appl. Phys. Lett. 90 (2007) 072907.

DOI: 10.1063/1.2472092

Google Scholar

[16] Z.H. Chen, L. You, C.W. Huang, et al, Nanoscale domains in strained epitaxial BiFeO3 thin films on LaSrAlO4 substrate, Appl. Phys. Lett. 96 (2010) 252903.

DOI: 10.1063/1.3456729

Google Scholar

[17] Y. Wang, Y.H. Lin, C.W. Nan, Thickness dependent size effect of BiFeO3 films grown on LaNiO3- buffered Si substrates, J. Appl. Phys. 104 (2008) 123912.

DOI: 10.1063/1.3054169

Google Scholar

[18] F. Yan, T.J. Zhu, M.O. Lai, et al, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films, Scripta Mater. 63 (2010) 780-783.

DOI: 10.1016/j.scriptamat.2010.06.013

Google Scholar

[19] F. Yan, M. -O. Lai, L. Lu, Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films, J. Phys. Chem. C 114 (2010) 6994-6998.

DOI: 10.1021/jp1009127

Google Scholar

[20] F. Yan, T.J. Zhu, M.O. Lai, et al, Role of Pb(Zr0. 52Ti0. 48)O3 substitution in multiferroic properties of polycrystalline BiFeO3 thin films, J. Appl. Phys. 110 (2011) 114116.

Google Scholar

[21] L. You, E. Liang, R. Guo, et al, Polarization switching in quasiplanar BiFeO3 capacitors, Appl. Phys. Lett. 97 (2010) 062910.

DOI: 10.1063/1.3479911

Google Scholar

[22] W.G. Chen, W. Ren, L. You, et al, Domain structure and in-plane switching in a highly strained Bi0. 9Sm0. 1FeO3 film, Appl. Phys. Lett. 99 (2011) 222904.

Google Scholar

[23] F. Yan, T.J. Zhu, M.O. Lai, et al, Effect of bottom electrodes on nanoscale switching characteristics and piezoelectric response in polycrystalline BiFeO3 thin films, J. Appl. Phys. 110 (2011) 084102.

DOI: 10.1063/1.3651383

Google Scholar