[1]
S.A.E. Boyer, J.-P.E. Grolier, H. Yoshida, J.-M. Haudin, J.-L. Chenot, Thermodynamic and Thermokinetics to model phase transitions of polymers over extended temperature and pressure ranges under various hydrostatic fluids, in Juan Carlos Moreno-Pirajan (Ed.), Thermodynamics - Interactions Studies - Solids, Liquids and Gases, Intech, Croatia, 2011, pp.641-672.
DOI: 10.5772/24402
Google Scholar
[2]
M. Ramanathan, S.B. Darling, Mesoscale morphologies in polymer thin films, Prog. Polym. Sci. 36 (2011) 793-812.
DOI: 10.1016/j.progpolymsci.2010.12.006
Google Scholar
[3]
D. Byelov, P. Panine, K. Remerie, E. Biemond, G.C. Alfonso, W.H. de Jeu, Crystallization under shear in isotactic polypropylene containing nucleators, Polymer 49 (2008) 3076-3083.
DOI: 10.1016/j.polymer.2008.04.051
Google Scholar
[4]
Q. Zhou, F. Liu, C. Guo, Q. Fu, K. Shen, J. Zhang, Shish-kebab-like cylindrulite structures resulted from periodical shear-induced crystallization of isotactic polypropylene, Polymer 52 (2011) 2970-2978.
DOI: 10.1016/j.polymer.2011.05.002
Google Scholar
[5]
M. Boutaous, P. Bourgin, M. Zinet, Thermally and flow induced crystallization of polymers at low shear rate, J. Non-Newtonian Fluid Mech. 165 (2010) 227-237.
DOI: 10.1016/j.jnnfm.2009.12.005
Google Scholar
[6]
R. Fulchiron, E. Koscher, G. Poutot, D. Delaunay, G. Régnier, Analysis of the pressure effect on the crystallization kinetics of polypropylene: dilatometric measurements and thermal gradient modeling, J. Macromol. Sci. Phys. B40 (2001) 297-314.
DOI: 10.1081/mb-100106159
Google Scholar
[7]
J.-M. Haudin, J. Smirnova, L. Silva, B. Monasse, J.-L. Chenot, Modeling of structure development during polymer processing. Polym. Sci. Ser. A 50 (2008) 538-549.
DOI: 10.1134/s0965545x08050088
Google Scholar
[8]
P.-W. Zhu, A.W. Phillips, G. Edward, R. Zheng, Flow distribution in shear-induced crystallisation of melt polymer: A prediction from morphological distribution of solid polymer, Polymer 53 (2012) 2274-2282.
DOI: 10.1016/j.polymer.2012.03.047
Google Scholar
[9]
R.I. Tanner, F. Qi, A comparison of some models for describing polymer crystallization at low deformation rates, J. Non-Newtonian Fluid Mech. 127 (2005) 131-141.
DOI: 10.1016/j.jnnfm.2005.02.005
Google Scholar
[10]
Y. Mu, G. Zhao, A. Chen, X. Wu, Numerical investigation of the thermally and flow induced crystallization behavior of semi-crystalline polymers by using finite element-finite difference method, Comput. Chem. Eng. 46 (2012) 190-204.
DOI: 10.1016/j.compchemeng.2012.06.026
Google Scholar
[11]
Y. Rong, H.P. He, W. Cao, C.Y. Shen, J.B. Chen, Multi-scale modeling and numerical simulation of the flow-induced crystallization of polymer, Comput. Mater. Sci. 67 (2013) 35-39.
DOI: 10.1016/j.commatsci.2012.07.030
Google Scholar
[12]
S.A.E. Boyer, P. Robinson, P. Ganet, J.-P. Melis, J.-M. Haudin, Crystallization of Polypropylene at High Cooling Rates: Microscopic and Calorimetric Studies, J. Appl. Polym. Sci. 125 (2012) 4219-4232.
DOI: 10.1002/app.36578
Google Scholar
[13]
E. Zhuravlev, J.W.P. Schmelzer, B. Wunderlich, C. Schick, Kinetics of nucleation and crystallization in poly(3 -caprolactone) (PCL), Polymer 52 (2011) 1983-1997.
DOI: 10.1016/j.polymer.2011.03.013
Google Scholar
[14]
R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, E. Koscher, Study and modeling of heat transfer during the solidification of semi-crystalline polymers, Int. J. Heat Mass Transfer 48 (2005) 5417-5430.
DOI: 10.1016/j.ijheatmasstransfer.2005.06.015
Google Scholar
[15]
G. Lamberti, Isotactic polypropylene crystallization: Analysis and modeling, Eur. Polym. J. 47 (2011) 1097-1112.
Google Scholar
[16]
T.D. Papathanasiou, Modelling of injection mold filling: Effect of undercooling on polymer crystallization. Chem. Eng. Sci. 50 (1995) 3433-3442.
DOI: 10.1016/0009-2509(95)00171-z
Google Scholar
[17]
M. Boutaous, N. Brahmia, P. Bourgin, Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling, C.R. Mécanique 338 (2010) 78-84.
DOI: 10.1016/j.crme.2009.12.009
Google Scholar
[18]
B. Wunderlich, T. Davidson, Extended-Chain Crystals. I. General crystallization conditions and review of pressure crystallization of polyethylene, J. Polym. Sci. A-2, 7 (1969) 2043-2050.
DOI: 10.1002/pol.1969.160071206
Google Scholar
[19]
S.K. Bhateja, K.D. Pae, The effects of hydrostatic pressure on the compressibility, crystallization, and melting of polymers, J. Macromol. Sci. - Rev. Macromol. Chem. Phys. C13 (1975) 77-133.
DOI: 10.1080/15321797508068146
Google Scholar
[20]
B. Wunderlich, Pressurestat for high polymer crystallization, Rev. Sci. Instrum. 32 (1961) 1424-1425.
Google Scholar
[21]
B.C. Edwards, P.J. Phillips, A technique for the detailed investigation of polymer crystallization at high pressures, Polymer 15 (1974) 491-495.
DOI: 10.1016/0032-3861(74)90088-3
Google Scholar
[22]
D.V. Rees, D.C. Bassett, Origin of extended-chain lamellae in polyethylene, Nature 219 (1968) 368-370.
DOI: 10.1038/219368a0
Google Scholar
[23]
T. Kazmierczak, A. Galeski, Transformation of polyethylene crystals by high-pressure annealing, J. Appl. Polymer Sci. 86 (2002) 1337-1350.
DOI: 10.1002/app.11275
Google Scholar
[24]
J. Kong, X. Fan, W. Qiao, Y. Xie, Q. Si, Y. Tang, Study of a skin-core type of crystallinity distribution within polyethylene specimen crystallized under high pressure, Polymer 46 (2005) 7644-7651.
DOI: 10.1016/j.polymer.2005.04.108
Google Scholar
[25]
S. Matsuoka, The effect of pressure and temperature on the specific volume of polyethylene, J. Polymer Sci. 57 (1962) 569-588.
DOI: 10.1002/pol.1962.1205716545
Google Scholar
[26]
R. Eckel, M. Buback, G.R. Strobl, Untersuchung der druckinduzierten Kristallisation von Polyäthylen mit Hilfe einer neuen Raman-Hochdruckzelle, Colloid Polymer Sci. 259 (1981) 326-224.
DOI: 10.1007/bf01524711
Google Scholar
[27]
Y. Maeda, H. Kanetsuna, Crystallization and melting of polyethylene under high pressure. I. Crystallization by slow cooling from the melt, J. Polymer Sci. Polymer Phys. Ed. 12 (1974) 2551-2565.
DOI: 10.1002/pol.1974.180121213
Google Scholar
[28]
G. Eder, P. Hierzenberger, P. Amorim, Pressure Influences on the Development of Polymer Morphologies (Paper presented at the 27th World Congress of the Polymer Processing Society, Marrakech, Morocco, 10-14 May 2011).
Google Scholar
[29]
T. Davidson, B. Wunderlich, Differential Thermal Analysis of polyethylene under high pressure, J. Polymer Sci. 2 Polymer Phys. 7 (1969) 377-388.
DOI: 10.1002/pol.1969.160070209
Google Scholar
[30]
K. Matsushige ,T. Takemura. Crystallization of macromolecules under high pressure. J. Cryst. Growth 48 (1980) 343-354.
DOI: 10.1016/0022-0248(80)90221-3
Google Scholar
[31]
G.W.H. Höhne, S. Rastogi, B. Wunderlich, High pressure differential scanning calorimetry of poly(4-methyl-pentene-1), Polymer, 41 (2000) 8869-8878.
DOI: 10.1016/s0032-3861(00)00230-5
Google Scholar
[32]
S.A.E. Boyer, Calorimetric/PVT investigations of the interactions in polymer/gas systems under high pressures, Netsu Sokutei 33 (2006) 114-126.
Google Scholar
[33]
D.C. Bassett, S. Block, G.J. Piermarini, A high-pressure phase of polyethylene and chain-extended growth, J. Appl. Phys. 45 (1974) 4146-4150..
DOI: 10.1063/1.1663028
Google Scholar
[34]
K. Mezghani, P.J. Phillips, The g-phase of high molecular weight isotactic polypropylene. II: The morphology of the g-form crystallized at 200 MPa, Polymer 38 (1997) 5725-5733.
DOI: 10.1016/s0032-3861(97)00131-6
Google Scholar
[35]
S. Rastogi, M. Hikosaka, H. Kawabata, A. Keller, Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability and lateral growth. Macromolecules, 24, 6384-6391 (1991).
DOI: 10.1021/ma00024a003
Google Scholar
[36]
H.T. Tseng, P.J. Phillips, Crystallization kinetics of linear polyethylene at elevated pressures, Macromolecules 18 (1985) 1565-1571.
DOI: 10.1021/ma00150a007
Google Scholar
[37]
M. Hikosaka, S. Tamaki, Growth of bulky extended chain single crystals of polyethylene, J. Phys. Soc. Jpn. 50 (1981) 638-641.
DOI: 10.1143/jpsj.50.638
Google Scholar
[38]
T.S. Hsu, Infrared study of high-pressure crystallization of polyethylene J. Polym. Sci., Polym. Phys. Ed., 18 (1980) 2379-2389.
DOI: 10.1002/pol.1980.180181206
Google Scholar
[39]
M.C. Le, S. Belhabib, C. Nicolazo, P. Vachot, P. Mousseau, A. Sarda, R. Deterre, Pressure influence on crystallization kinetics during injection molding, J. Mater. Process. Tech. 211 (2011) 1757-1763
DOI: 10.1016/j.jmatprotec.2011.05.017
Google Scholar
[40]
X. Tardif, A. Agazzi, V. Sobotka, N. Boyard, Y. Jarny, D. Delaunay, A multifunctional device to determ ine specifi c volume, thermal conductivity and crystallization kinetics of semi-crystal line polymers, Polym. Test. 31 (2012) 819-827.
DOI: 10.1016/j.polymertesting.2012.05.008
Google Scholar
[41]
K. Watanabe, T. Suzuki, Y. Masubuchi, T. Taniguchi, J.-I. Takimoto, K. Koyama, Crystallization kinetics of polypropylene under high pressure and steady shear flow, Polymer 44 (2003) 5843-5849.
DOI: 10.1016/s0032-3861(03)00604-9
Google Scholar
[42]
M. van Drongelen, T.B. van Erp, G.W.M. Peters, Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure, Polymer 53 (2012) 4758-4769.
DOI: 10.1016/j.polymer.2012.08.003
Google Scholar
[43]
T.B. van Erp, L. Balzano, A.B. Spoelstra, L.E. Govaert, G.W.M. Peters, Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure, Polymer 53 (2012) 5896-5908.
DOI: 10.1016/j.polymer.2012.10.027
Google Scholar
[44]
. J.-M. Haudin, J.-L. Chenot, Numerical and physical modeling of polymer crystallization. Part I: Theoretical and numerical analysis, Int. Polymer Process. 19 (2004) 267-274.
DOI: 10.3139/217.1829
Google Scholar
[45]
D.R. Brown, J. Jonas, NMR Study of polyethylene crystallization kinetics under high pressure, J. Polymer Sci. Polymer Phys. Ed. 22 (1984) 655-667.
DOI: 10.1002/pol.1984.180220409
Google Scholar
[46]
J. He, P. Zoller, Crystallization of polypropylene, nylon 6-6 and poly(ethylene terephthalate) at pressures to 200 MPa: Kinetics and characterization of products, J. Polymer Sci. B Polymer Phys. 32 (1994) 1049-1067.
DOI: 10.1002/polb.1994.090320610
Google Scholar
[47]
C. Angelloz, R. Fulchiron, A. Douillard, B. Chabert, R. Fillit, A. Vautrin, L. David, Crystallization of isotactic polypropylene under pressure, Macromolecules 33 (2000) 4138-4145.
DOI: 10.1021/ma991813e
Google Scholar
[48]
G.M. Martin, L. Mandelkern, Effect of hydrostatic pressures on the crystallization kinetics of natural rubber, J. Appl. Phys. 34(1963) 2312-2317.
DOI: 10.1063/1.1702737
Google Scholar
[49]
M. Kyotani, H. Kanetsuna, Crystallization kinetics of polyethylene under high pressure, J. Polym. Sci. Polym. Phys. Ed. 12 (1974) 2331-2345.
DOI: 10.1002/pol.1974.180121111
Google Scholar
[50]
S. Sawada, T. Nose, Crystallization kinetics of fractionated polyethylenes at high pressures by a DTA method, Polym. J. 11 (1979) 477-483.
DOI: 10.1295/polymj.11.477
Google Scholar
[51]
M. Yasuniwa, R. Enoshita, T.Takemura, X-ray studies of polyethylene under high pressure, Jpn. J. Appl. Phys., 15 (1976) 1421-1428.
DOI: 10.1143/jjap.15.1421
Google Scholar
[52]
V.M Baranovskii, A.M. Tarara, A.A. Khomik, V. Ya. Bulgakov, V.N. Kestel'man, Study of the thermodynamics of the melting and kinetics of isothermal crystallization of isotactic polypropylene at raised pressures, Polymer Sci. U.S.S.R. 33 (1991) 237-241 (Vysokomol. Soyed. A33 (1991) 311-315).
DOI: 10.1016/0032-3950(91)90185-s
Google Scholar
[53]
S.A.E. BOYER, F. FOURNIER, CH.-A. GANDIN, J.-M. HAUDIN, MODEL EXPERIMENTS AND STRUCTURE DEVELOPMENT IN HIGH-PRESSURE CRYSTALLIZATION: THE CRISTAPRESS PROJECT, REV. SCI. INSTRUM (SUBMITTED).
DOI: 10.1063/1.4866646
Google Scholar
[54]
J.I. Lauritzen, J.D. Hoffman, Formation of Polymer Crystals with Folded Chains from Dilute Solution, J. J. Chem. Phys. 31 (1959) 1680-1681.
DOI: 10.1063/1.1730678
Google Scholar
[55]
J.D. Hoffman, R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment, Polymer 38 (1997) 3151-3212.
DOI: 10.1016/s0032-3861(97)00071-2
Google Scholar
[56]
C.R. Snyder, H. Marand, M.L. Mansfield, Lateral substrate completion rate in the Lauritzen−Hoffman secondary surface nucleation theory: Nature of the friction coefficient, Macromolecules 29 (1996) 7508-7513.
DOI: 10.1021/ma960589f
Google Scholar
[57]
C.R. Snyder, H. Marand, Effect of chain transport in the secondary surface nucleation based flux theory and in the Lauritzen−Hoffman crystal growth rate formalism, Macromolecules 30 (1997) 2759-2766.
DOI: 10.1021/ma961633u
Google Scholar
[58]
S.Z.D. Cheng, B. Lotz, Enthalpic and entropic origins of nucleation barriers during polymer crystallization: the Hoffman–Lauritzen theory and beyond, Polymer 46 (2005) 8662-8681.
DOI: 10.1016/j.polymer.2005.03.125
Google Scholar
[59]
U. Leute, W. Dollhopf, E. Liska, Dilatometric study on the melting of polypropylene at elevated pressure, Colloid Polymer Sci. 256 (1978) 914-922.
DOI: 10.1007/bf01383587
Google Scholar
[60]
C. Nakafuku, High pressure d.t.a. study on the melting and crystallization of isotactic polypropylene, Polymer 22 (1981) 1673-1676.
DOI: 10.1016/0032-3861(81)90384-0
Google Scholar
[61]
J. Smirnova, L. Silva, B. Monasse, J.-M. Haudin, J.-L.Chenot, Identification of crystallization kinetics parameters by genetic algorithm in non-isothermal conditions. Eng. Comput. 24 (2007) 486-513.
DOI: 10.1108/02644400710755889
Google Scholar