An Original Model Experiment Designed for High-Pressure Crystallization with a Polymer Processing Concern

Article Preview

Abstract:

A comprehensive understanding of the inherent link between in-situ growth kinetics of a polymer spherulite and high-pressure constraints under controlled temperature is concerned. As a matter of fact, while the link with temperature is well illustrated, little comprehensive study has been conducted to quantify the effect of pressure. This is yet required to model ‘extreme’ polymer processing conditions.Mainly, the experimental set-ups developed to reproduce the pressure effect can be classified into four families: “simple” cells, dilatometric set-ups, differential thermal analysis and diamond anvil plus in-situ measurement. In this context, an original model experiment, named CRISTAPRESS, has been constructed. The cell design exploits the optical properties of semi-crystalline spherulites. Time-resolved light depolarizing microscopic observations are conducted concomitantly with a fine PVT control, for high pressure up to 200 MPa and temperature up to 300 °C. The physical analysis of isothermal and isobaric holding of a model polymer shows the influence of temperature and pressure on the key kinetic parameters of crystallization, i.e., the growth rate and the number of activated nuclei, as well as on the subsequent morphologies. Simple modeling dealing with the Avrami equation and the Hoffman & Lauritzen theory is established.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1592-1601

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A.E. Boyer, J.-P.E. Grolier, H. Yoshida, J.-M. Haudin, J.-L. Chenot, Thermodynamic and Thermokinetics to model phase transitions of polymers over extended temperature and pressure ranges under various hydrostatic fluids, in Juan Carlos Moreno-Pirajan (Ed.), Thermodynamics - Interactions Studies - Solids, Liquids and Gases, Intech, Croatia, 2011, pp.641-672.

DOI: 10.5772/24402

Google Scholar

[2] M. Ramanathan, S.B. Darling, Mesoscale morphologies in polymer thin films, Prog. Polym. Sci. 36 (2011) 793-812.

DOI: 10.1016/j.progpolymsci.2010.12.006

Google Scholar

[3] D. Byelov, P. Panine, K. Remerie, E. Biemond, G.C. Alfonso, W.H. de Jeu, Crystallization under shear in isotactic polypropylene containing nucleators, Polymer 49 (2008) 3076-3083.

DOI: 10.1016/j.polymer.2008.04.051

Google Scholar

[4] Q. Zhou, F. Liu, C. Guo, Q. Fu, K. Shen, J. Zhang, Shish-kebab-like cylindrulite structures resulted from periodical shear-induced crystallization of isotactic polypropylene, Polymer 52 (2011) 2970-2978.

DOI: 10.1016/j.polymer.2011.05.002

Google Scholar

[5] M. Boutaous, P. Bourgin, M. Zinet, Thermally and flow induced crystallization of polymers at low shear rate, J. Non-Newtonian Fluid Mech. 165 (2010) 227-237.

DOI: 10.1016/j.jnnfm.2009.12.005

Google Scholar

[6] R. Fulchiron, E. Koscher, G. Poutot, D. Delaunay, G. Régnier, Analysis of the pressure effect on the crystallization kinetics of polypropylene: dilatometric measurements and thermal gradient modeling, J. Macromol. Sci. Phys. B40 (2001) 297-314.

DOI: 10.1081/mb-100106159

Google Scholar

[7] J.-M. Haudin, J. Smirnova, L. Silva, B. Monasse, J.-L. Chenot, Modeling of structure development during polymer processing. Polym. Sci. Ser. A 50 (2008) 538-549.

DOI: 10.1134/s0965545x08050088

Google Scholar

[8] P.-W. Zhu, A.W. Phillips, G. Edward, R. Zheng, Flow distribution in shear-induced crystallisation of melt polymer: A prediction from morphological distribution of solid polymer, Polymer 53 (2012) 2274-2282.

DOI: 10.1016/j.polymer.2012.03.047

Google Scholar

[9] R.I. Tanner, F. Qi, A comparison of some models for describing polymer crystallization at low deformation rates, J. Non-Newtonian Fluid Mech. 127 (2005) 131-141.

DOI: 10.1016/j.jnnfm.2005.02.005

Google Scholar

[10] Y. Mu, G. Zhao, A. Chen, X. Wu, Numerical investigation of the thermally and flow induced crystallization behavior of semi-crystalline polymers by using finite element-finite difference method, Comput. Chem. Eng. 46 (2012) 190-204.

DOI: 10.1016/j.compchemeng.2012.06.026

Google Scholar

[11] Y. Rong, H.P. He, W. Cao, C.Y. Shen, J.B. Chen, Multi-scale modeling and numerical simulation of the flow-induced crystallization of polymer, Comput. Mater. Sci. 67 (2013) 35-39.

DOI: 10.1016/j.commatsci.2012.07.030

Google Scholar

[12] S.A.E. Boyer, P. Robinson, P. Ganet, J.-P. Melis, J.-M. Haudin, Crystallization of Polypropylene at High Cooling Rates: Microscopic and Calorimetric Studies, J. Appl. Polym. Sci. 125 (2012) 4219-4232.

DOI: 10.1002/app.36578

Google Scholar

[13] E. Zhuravlev, J.W.P. Schmelzer, B. Wunderlich, C. Schick, Kinetics of nucleation and crystallization in poly(3 -caprolactone) (PCL), Polymer 52 (2011) 1983-1997.

DOI: 10.1016/j.polymer.2011.03.013

Google Scholar

[14] R. Le Goff, G. Poutot, D. Delaunay, R. Fulchiron, E. Koscher, Study and modeling of heat transfer during the solidification of semi-crystalline polymers, Int. J. Heat Mass Transfer 48 (2005) 5417-5430.

DOI: 10.1016/j.ijheatmasstransfer.2005.06.015

Google Scholar

[15] G. Lamberti, Isotactic polypropylene crystallization: Analysis and modeling, Eur. Polym. J. 47 (2011) 1097-1112.

Google Scholar

[16] T.D. Papathanasiou, Modelling of injection mold filling: Effect of undercooling on polymer crystallization. Chem. Eng. Sci. 50 (1995) 3433-3442.

DOI: 10.1016/0009-2509(95)00171-z

Google Scholar

[17] M. Boutaous, N. Brahmia, P. Bourgin, Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling, C.R. Mécanique 338 (2010) 78-84.

DOI: 10.1016/j.crme.2009.12.009

Google Scholar

[18] B. Wunderlich, T. Davidson, Extended-Chain Crystals. I. General crystallization conditions and review of pressure crystallization of polyethylene, J. Polym. Sci. A-2, 7 (1969) 2043-2050.

DOI: 10.1002/pol.1969.160071206

Google Scholar

[19] S.K. Bhateja, K.D. Pae, The effects of hydrostatic pressure on the compressibility, crystallization, and melting of polymers, J. Macromol. Sci. - Rev. Macromol. Chem. Phys. C13 (1975) 77-133.

DOI: 10.1080/15321797508068146

Google Scholar

[20] B. Wunderlich, Pressurestat for high polymer crystallization, Rev. Sci. Instrum. 32 (1961) 1424-1425.

Google Scholar

[21] B.C. Edwards, P.J. Phillips, A technique for the detailed investigation of polymer crystallization at high pressures, Polymer 15 (1974) 491-495.

DOI: 10.1016/0032-3861(74)90088-3

Google Scholar

[22] D.V. Rees, D.C. Bassett, Origin of extended-chain lamellae in polyethylene, Nature 219 (1968) 368-370.

DOI: 10.1038/219368a0

Google Scholar

[23] T. Kazmierczak, A. Galeski, Transformation of polyethylene crystals by high-pressure annealing, J. Appl. Polymer Sci. 86 (2002) 1337-1350.

DOI: 10.1002/app.11275

Google Scholar

[24] J. Kong, X. Fan, W. Qiao, Y. Xie, Q. Si, Y. Tang, Study of a skin-core type of crystallinity distribution within polyethylene specimen crystallized under high pressure, Polymer 46 (2005) 7644-7651.

DOI: 10.1016/j.polymer.2005.04.108

Google Scholar

[25] S. Matsuoka, The effect of pressure and temperature on the specific volume of polyethylene, J. Polymer Sci. 57 (1962) 569-588.

DOI: 10.1002/pol.1962.1205716545

Google Scholar

[26] R. Eckel, M. Buback, G.R. Strobl, Untersuchung der druckinduzierten Kristallisation von Polyäthylen mit Hilfe einer neuen Raman-Hochdruckzelle, Colloid Polymer Sci. 259 (1981) 326-224.

DOI: 10.1007/bf01524711

Google Scholar

[27] Y. Maeda, H. Kanetsuna, Crystallization and melting of polyethylene under high pressure. I. Crystallization by slow cooling from the melt, J. Polymer Sci. Polymer Phys. Ed. 12 (1974) 2551-2565.

DOI: 10.1002/pol.1974.180121213

Google Scholar

[28] G. Eder, P. Hierzenberger, P. Amorim, Pressure Influences on the Development of Polymer Morphologies (Paper presented at the 27th World Congress of the Polymer Processing Society, Marrakech, Morocco, 10-14 May 2011).

Google Scholar

[29] T. Davidson, B. Wunderlich, Differential Thermal Analysis of polyethylene under high pressure, J. Polymer Sci. 2 Polymer Phys. 7 (1969) 377-388.

DOI: 10.1002/pol.1969.160070209

Google Scholar

[30] K. Matsushige ,T. Takemura. Crystallization of macromolecules under high pressure. J. Cryst. Growth 48 (1980) 343-354.

DOI: 10.1016/0022-0248(80)90221-3

Google Scholar

[31] G.W.H. Höhne, S. Rastogi, B. Wunderlich, High pressure differential scanning calorimetry of poly(4-methyl-pentene-1), Polymer, 41 (2000) 8869-8878.

DOI: 10.1016/s0032-3861(00)00230-5

Google Scholar

[32] S.A.E. Boyer, Calorimetric/PVT investigations of the interactions in polymer/gas systems under high pressures, Netsu Sokutei 33 (2006) 114-126.

Google Scholar

[33] D.C. Bassett, S. Block, G.J. Piermarini, A high-pressure phase of polyethylene and chain-extended growth, J. Appl. Phys. 45 (1974) 4146-4150..

DOI: 10.1063/1.1663028

Google Scholar

[34] K. Mezghani, P.J. Phillips, The g-phase of high molecular weight isotactic polypropylene. II: The morphology of the g-form crystallized at 200 MPa, Polymer 38 (1997) 5725-5733.

DOI: 10.1016/s0032-3861(97)00131-6

Google Scholar

[35] S. Rastogi, M. Hikosaka, H. Kawabata, A. Keller, Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability and lateral growth. Macromolecules, 24, 6384-6391 (1991).

DOI: 10.1021/ma00024a003

Google Scholar

[36] H.T. Tseng, P.J. Phillips, Crystallization kinetics of linear polyethylene at elevated pressures, Macromolecules 18 (1985) 1565-1571.

DOI: 10.1021/ma00150a007

Google Scholar

[37] M. Hikosaka, S. Tamaki, Growth of bulky extended chain single crystals of polyethylene, J. Phys. Soc. Jpn. 50 (1981) 638-641.

DOI: 10.1143/jpsj.50.638

Google Scholar

[38] T.S. Hsu, Infrared study of high-pressure crystallization of polyethylene J. Polym. Sci., Polym. Phys. Ed., 18 (1980) 2379-2389.

DOI: 10.1002/pol.1980.180181206

Google Scholar

[39] M.C. Le, S. Belhabib, C. Nicolazo, P. Vachot, P. Mousseau, A. Sarda, R. Deterre, Pressure influence on crystallization kinetics during injection molding, J. Mater. Process. Tech. 211 (2011) 1757-1763

DOI: 10.1016/j.jmatprotec.2011.05.017

Google Scholar

[40] X. Tardif, A. Agazzi, V. Sobotka, N. Boyard, Y. Jarny, D. Delaunay, A multifunctional device to determ ine specifi c volume, thermal conductivity and crystallization kinetics of semi-crystal line polymers, Polym. Test. 31 (2012) 819-827.

DOI: 10.1016/j.polymertesting.2012.05.008

Google Scholar

[41] K. Watanabe, T. Suzuki, Y. Masubuchi, T. Taniguchi, J.-I. Takimoto, K. Koyama, Crystallization kinetics of polypropylene under high pressure and steady shear flow, Polymer 44 (2003) 5843-5849.

DOI: 10.1016/s0032-3861(03)00604-9

Google Scholar

[42] M. van Drongelen, T.B. van Erp, G.W.M. Peters, Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of cooling rate and pressure, Polymer 53 (2012) 4758-4769.

DOI: 10.1016/j.polymer.2012.08.003

Google Scholar

[43] T.B. van Erp, L. Balzano, A.B. Spoelstra, L.E. Govaert, G.W.M. Peters, Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure, Polymer 53 (2012) 5896-5908.

DOI: 10.1016/j.polymer.2012.10.027

Google Scholar

[44] . J.-M. Haudin, J.-L. Chenot, Numerical and physical modeling of polymer crystallization. Part I: Theoretical and numerical analysis, Int. Polymer Process. 19 (2004) 267-274.

DOI: 10.3139/217.1829

Google Scholar

[45] D.R. Brown, J. Jonas, NMR Study of polyethylene crystallization kinetics under high pressure, J. Polymer Sci. Polymer Phys. Ed. 22 (1984) 655-667.

DOI: 10.1002/pol.1984.180220409

Google Scholar

[46] J. He, P. Zoller, Crystallization of polypropylene, nylon 6-6 and poly(ethylene terephthalate) at pressures to 200 MPa: Kinetics and characterization of products, J. Polymer Sci. B Polymer Phys. 32 (1994) 1049-1067.

DOI: 10.1002/polb.1994.090320610

Google Scholar

[47] C. Angelloz, R. Fulchiron, A. Douillard, B. Chabert, R. Fillit, A. Vautrin, L. David, Crystallization of isotactic polypropylene under pressure, Macromolecules 33 (2000) 4138-4145.

DOI: 10.1021/ma991813e

Google Scholar

[48] G.M. Martin, L. Mandelkern, Effect of hydrostatic pressures on the crystallization kinetics of natural rubber, J. Appl. Phys. 34(1963) 2312-2317.

DOI: 10.1063/1.1702737

Google Scholar

[49] M. Kyotani, H. Kanetsuna, Crystallization kinetics of polyethylene under high pressure, J. Polym. Sci. Polym. Phys. Ed. 12 (1974) 2331-2345.

DOI: 10.1002/pol.1974.180121111

Google Scholar

[50] S. Sawada, T. Nose, Crystallization kinetics of fractionated polyethylenes at high pressures by a DTA method, Polym. J. 11 (1979) 477-483.

DOI: 10.1295/polymj.11.477

Google Scholar

[51] M. Yasuniwa, R. Enoshita, T.Takemura, X-ray studies of polyethylene under high pressure, Jpn. J. Appl. Phys., 15 (1976) 1421-1428.

DOI: 10.1143/jjap.15.1421

Google Scholar

[52] V.M Baranovskii, A.M. Tarara, A.A. Khomik, V. Ya. Bulgakov, V.N. Kestel'man, Study of the thermodynamics of the melting and kinetics of isothermal crystallization of isotactic polypropylene at raised pressures, Polymer Sci. U.S.S.R. 33 (1991) 237-241 (Vysokomol. Soyed. A33 (1991) 311-315).

DOI: 10.1016/0032-3950(91)90185-s

Google Scholar

[53] S.A.E. BOYER, F. FOURNIER, CH.-A. GANDIN, J.-M. HAUDIN, MODEL EXPERIMENTS AND STRUCTURE DEVELOPMENT IN HIGH-PRESSURE CRYSTALLIZATION: THE CRISTAPRESS PROJECT, REV. SCI. INSTRUM (SUBMITTED).

DOI: 10.1063/1.4866646

Google Scholar

[54] J.I. Lauritzen, J.D. Hoffman, Formation of Polymer Crystals with Folded Chains from Dilute Solution, J. J. Chem. Phys. 31 (1959) 1680-1681.

DOI: 10.1063/1.1730678

Google Scholar

[55] J.D. Hoffman, R.L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment, Polymer 38 (1997) 3151-3212.

DOI: 10.1016/s0032-3861(97)00071-2

Google Scholar

[56] C.R. Snyder, H. Marand, M.L. Mansfield, Lateral substrate completion rate in the Lauritzen−Hoffman secondary surface nucleation theory:  Nature of the friction coefficient, Macromolecules 29 (1996) 7508-7513.

DOI: 10.1021/ma960589f

Google Scholar

[57] C.R. Snyder, H. Marand, Effect of chain transport in the secondary surface nucleation based flux theory and in the Lauritzen−Hoffman crystal growth rate formalism, Macromolecules 30 (1997) 2759-2766.

DOI: 10.1021/ma961633u

Google Scholar

[58] S.Z.D. Cheng, B. Lotz, Enthalpic and entropic origins of nucleation barriers during polymer crystallization: the Hoffman–Lauritzen theory and beyond, Polymer 46 (2005) 8662-8681.

DOI: 10.1016/j.polymer.2005.03.125

Google Scholar

[59] U. Leute, W. Dollhopf, E. Liska, Dilatometric study on the melting of polypropylene at elevated pressure, Colloid Polymer Sci. 256 (1978) 914-922.

DOI: 10.1007/bf01383587

Google Scholar

[60] C. Nakafuku, High pressure d.t.a. study on the melting and crystallization of isotactic polypropylene, Polymer 22 (1981) 1673-1676.

DOI: 10.1016/0032-3861(81)90384-0

Google Scholar

[61] J. Smirnova, L. Silva, B. Monasse, J.-M. Haudin, J.-L.Chenot, Identification of crystallization kinetics parameters by genetic algorithm in non-isothermal conditions. Eng. Comput. 24 (2007) 486-513.

DOI: 10.1108/02644400710755889

Google Scholar