Prediction of Tensile Properties of Injection Moulding Flax Fibre Reinforced Polypropylene from Morphology Analysis

Article Preview

Abstract:

The Young modulus and tensile strength of flax fibre reinforced polypropylene were determined and compared with the micromechanical models usually used in the case of short glass fibre reinforced composites. The fibre length and fibre diameter distributions of the injected reinforced of 2, 4, 8 and 22vol% compound were determined and used to the models in order to evaluate the expected properties of the composites. The mechanical properties were interpreted on the base of real fibre content, fibre orientation, fibre length and diameter distributions and morphology of the composites. The Kelly-Tyson’s model of the tensile strength prediction has been modified to take in consideration the fibre property variability due to the large distribution of fibre shape ratio induced by the process. Finally matrix modulus has been adjusted to take into account the change of crystallinity with fibre content.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1573-1582

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Nabi Saheb and J. P. Jog, Natural fibre polymer composites: A review, Advances in Polymer Technology, 18 (4), 351-363, (1999).

DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Google Scholar

[2] S. V. Joshi, L. T. Drzal, A. K. Mohanty and S. Arora, Are natural fibre composites environmentally superior to glass fibre reinforced composites, Composites Part A: Applied Science and Manufacturing, 35, 371 (2004).

DOI: 10.1016/j.compositesa.2003.09.016

Google Scholar

[3] E. Sparnins, Machanical properties of flax fibres and their composites, Licentiate Thesis, Lulea University of Technology, Sweden, October 2006.

Google Scholar

[4] H. L. Bos, The potential of flax fibres as reinforcement for composite materials, Phd Thesis, Eindhoven :Technische Universiteit Eindhoven, 2004.

Google Scholar

[5] K. Oksman, A. P. Mathew, R. Langstrom, B. Nystrom, K. Joseph, The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene, Composites Science and Technology, 69, 1847-1853 (2009).

DOI: 10.1016/j.compscitech.2009.03.020

Google Scholar

[6] N. Le Moigne, M. Van den Oever, T. Budtova, A stastistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres, Composite : Part A 42, 1542-1550, (2001).

DOI: 10.1016/j.compositesa.2011.07.012

Google Scholar

[7] N. M. Barkoula, S.K. Garkhail, T. Peijs, Effect of compounding and injection molding on mechanical properties of flax fiber polypropylene composites, Jouranal of Reinforced Plastics and Composites, 29, 9, 1366-1385, (2010).

DOI: 10.1177/0731684409104465

Google Scholar

[8] T. Aurich, G. Menning, Flow-induced fibre orientation in injection molded flax fiber reinforced polypropylene, Polymer Composites, 22, 5, 680-689 (2001).

DOI: 10.1002/pc.10570

Google Scholar

[9] H.L. Bos, J. Mussig, M.J.A. Van den Oever, Mechanical properties of short-flax fibre reinforced compounds, Composites, Part A 37, 1591-1604 (2006).

DOI: 10.1016/j.compositesa.2005.10.011

Google Scholar

[10] H. Ju, H. Wabg, N. Pattrarachaiyakoop, M. Trada, A review on tensile properties of natural fiber reinforced polymer composites, Composites : Part B 42, 856-873, (2011).

DOI: 10.1016/j.compositesb.2011.01.010

Google Scholar

[11] A. G. Facca, M. T. Kortschot, N. Yan, Predicting the elastic modulus of natural fibre reinforced thermoplastics, Composites: Part A 37, 1660-1671 (2006).

DOI: 10.1016/j.compositesa.2005.10.006

Google Scholar

[12] A. G. Facca, M. T. Kortschot, N. Yan, Predicting the tensile strength of natural fibre reinforced thermoplastics, Composites Science and Technology, 67, 2454-2466 (2007).

DOI: 10.1016/j.compscitech.2006.12.018

Google Scholar

[13] J. Modniks, J. Anderson, Modeling elastic properties of short flax fiber-reinforced composites by orientation averaging, Computation Materials science, 50, 595-599, (2010).

DOI: 10.1016/j.commatsci.2010.09.022

Google Scholar

[14] J. Modniks, R. Joffe, J. Andersons, model of the mechanical response of short flax fiber reinforced polymer matrix composites, Procedia Engineering, 10, 2016-2021, (2011).

DOI: 10.1016/j.proeng.2011.04.334

Google Scholar

[15] M.C. Paiva, I. Ammar, A.R. Campos, R. B. Cheikh, A. M. Cunha, Alfa fibres : Mechanical, morphological and interfacial characterization, Composites Science and Technology, 67, 1132-1138, (2007).

DOI: 10.1016/j.compscitech.2006.05.019

Google Scholar

[16] A. Bourmaud, C. Morvan, C. Baley, Importance of fibre preparation to optimize the surface and mechanical properties of unitary flax fiber, Industrial Crops and Products, 32, 662-667, (2010).

DOI: 10.1016/j.indcrop.2010.08.002

Google Scholar

[17] W. H. Bowyer, M.G. Bader, On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres, Journal of Material Science, 7, 1315-1321, (1972).

DOI: 10.1007/bf00550698

Google Scholar

[18] R. S. Bay, C. L. Tucker III, Stereological measurement and error estimates for three-dimensional fiber orientation, Polymer Engineering and Science, 32, 4, 240-253 (1992).

DOI: 10.1002/pen.760320404

Google Scholar

[19] A. Vanaja, A. Rao, R.M.V.G.K, Fibre fraction effects on thermal degradation behaviour of GFRP, CFRP and hybrid composites, Journal of reinforced plastics and composites, 21 (15), 1389-1398. (2002)

DOI: 10.1177/0731684402021015780

Google Scholar

[20] C. I. Martins, V. M. Oliveira, E. Lafranche, Patricia Krawczak: On the interpretation of mechanical properties of injection moulding flax fibres reinforced polypropylene by morphological studies, submitted to Composite, Part A.

DOI: 10.4028/www.scientific.net/kem.554-557.1573

Google Scholar

[21] J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review, Polymer engineering and Science, 16, 5, 344-352, (1976)

DOI: 10.1002/pen.760160512

Google Scholar

[22] A. Kelly, W.R. Tyson, Tensile properties of fibre-reinforced metal : copper/tungsten and copper molybdenum, Journal of the Mechanics and Physics of Solids, 13, pp.329-350, (1965).

DOI: 10.1016/0022-5096(65)90035-9

Google Scholar

[23] Thomason J.L.: The influence of fibre properties on the properties of glass-fibre-reinforced polyamide 66, Journal of Composite Materials, 34, 2, 158-172 (2000).

DOI: 10.1177/002199830003400205

Google Scholar

[24] C.A Stover, D Koch, and C. Cohen. Observations of fiber orientation in simple shear flow of semi-dilute suspensions, Journal of Fluid Mechanics, 238, 277-296 (1992).

DOI: 10.1017/s002211209200171x

Google Scholar

[25] J. Karger-Kocsis, : Instrumented impact fracture and related failure behavior in short- and long-fibre-reinforced polypropylene, Composites Science and Technology, 48, 1-4, 273-283 (1993).

DOI: 10.1016/0266-3538(93)90144-6

Google Scholar

[26] H. Bos, The Potential of Flax Fibres as Reinforcement for Composite Materials, Phd Thesis, University Press Facilities, Eindhoven, the Netherlands, (2004).

Google Scholar

[27] M.J.A. Van den Oever, H.L. Bos, M.J.J.M Van Kemenade, Influence of the physical Structure of flax fibres on mechanical properties of flax fibre reinforced polypropylene composites, Applied Composite Materials, 7, 387-402, (2000).

DOI: 10.1002/masy.19981270126

Google Scholar

[28] J. Denault, T.Vu-Khanh, B. Foster, Tensile properties of injection molded long fibre thermoplastic composites, Polymer Composites, 10, 5, 313-321 (1989).

DOI: 10.1002/pc.750100507

Google Scholar

[29] K. Charlet, J-P. Jernot, M. Gomina, C. Baly, Morphology and mechanical behavior of a natural composite: the flax fiber, 16th Internationnal Conference on Composite Materials proceedings, Kyoto (2007), Japan.

Google Scholar

[30] C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Composites, Part A 33, 939-948, (2002).

DOI: 10.1016/s1359-835x(02)00040-4

Google Scholar

[31] A. van der Wal, J.J. Mulder, R.J. Gaymans, Fracture of polypropylene: The effect of crytallinity, Polymer, 39, 22, 5477-5481 (1998).

DOI: 10.1016/s0032-3861(97)10279-8

Google Scholar