TiO2 Thin Layer Coated Ag Nanoarrays Complex for Surface-Enhanced Raman Scattering Substrate

Article Preview

Abstract:

A novel method to prepare TiO2-coated Ag nanowire arrays for use as surface enhanced Raman scattering (SERS) active substrate is studied. First, Ag nanowires with an average diameter of 60 nm and length of several μm were synthesized in an anodic aluminum oxide (AAO) template by direct electrodeposition into the template. Then TiO2 thin layers with a 20 nm thickness were coated on Ag nanoarrays in large scale by a hydrolysis approach of tetrabutyl titanate. The SERS substrates prepared by this strategy have been proved as excellent candidates for the detection of organic pollutants by enhancing the SERS signals of these target species. The detection limit of methyl-parathion (MP) can be reduced to 10-6 M.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1037-1042

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Aroca, Surface Enhanced Vibrational Spectroscopy, JohnWiley & Sons, 2006.

Google Scholar

[2] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78 (1997) 1667.

DOI: 10.1103/physrevlett.78.1667

Google Scholar

[3] J. J. Baumberg, T. Kelf, Y. Sugawara, S. Cintra,; M. Abdelsalam,; P. N. Bartlett, A. E. Russell, Nano Lett. 2005, 5, 2262.

DOI: 10.1021/nl051618f

Google Scholar

[4] D. Y. Wang, T. S. Teng, Y. C. Wu, Y. C. Lee, K. H. Chen, C. H. Chen, Y. C. Chang, C. C. Chen, J. Phys. Chem. C. 2009, 113, 13498.

Google Scholar

[5] M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, Y. Mori, Anal. Sci. 2007, 23, 829–833.

Google Scholar

[6] D. Al-Mawlawi, C. Z. Liu, M. J. Moskovits, Mater. Res. 1994, 9, 1014–1018.

Google Scholar

[7] L. B. Yang, X. Jiang, W. D. Ruan, B. Zhao, W. Q. Xu, and J. R. Lombardi. J. Phys. Chem. C 2008, 112, 20095–20098

Google Scholar

[8] A. Roguska, A. Kudelskic, M. Pisareka, M. Oparac, M. J. Czachor. Applied Surface Science 257 (2011) 8182– 8189.

Google Scholar

[9] J. H. Yuan, F. Y. He, D. C. Sun, X. H. Xia, Chem. Mater. 2004, 16, 1841–1844.

Google Scholar

[10] Z. L. Huang , G. W. Meng , Q. Huang , Y. J. Yang , C. H. Zhu , and C. L. Tang, Adv. Mater. 2010, 22, 4136–4139

Google Scholar

[11] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li1, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren1, Z. L. Wang & Z. Q. Tian, Nature, Vol 464,18 March, 2010.

Google Scholar

[12] J. C. S. Costa, R. A. Ando, A. C. SantAna, L. M. Rossi, P. S. Santos, M. L. A. Temperini, P. Corio, Phys. Chem. Chem. Phys. 2009, 11, 7491.

Google Scholar