A MEMS Piezoelectric Cantilever Beam Array for Vibration Energy Harvesting

Article Preview

Abstract:

A micro piezoelectric cantilever beam array is designed for vibration energy harvesting. A single degree of freedom analytical model is developed to predict the properties of the device and is verified by finite element method. The piezoelectric material Aluminum Nitride was chosen for the compatibility with the CMOS process. The devices consisting of 5 piezoelectric cantilever beams and one proof mass were fabricated using micromachining technology. The resonance frequency, voltage and power were tested at excitation acceleration of 5.0 g. The maximum output power of the device is 9.13 μW at the resonance frequency of 1315 Hz when piezoelectric beams are connected in parallel.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1052-1057

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Benjamin, P. A. David, Spherical, rolling magnet generators for passive energy harvesting from human motion, J. Micromech. Microeng. 19 (2009) 094008 1-7.

DOI: 10.1088/0960-1317/19/9/094008

Google Scholar

[2] L. Zuo, B. Scully, J. Shestani and Y. Zhou, Design and characterization of an electromagnetic energy harvester for vehicle suspensions, Smart Mater. Struct. 19 (2010) 045003 1-10.

DOI: 10.1088/0964-1726/19/4/045003

Google Scholar

[3] S. Roundy, P. K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun. 26 (2003) 1131–1144.

DOI: 10.1016/s0140-3664(02)00248-7

Google Scholar

[4] E. A. Ethem, L. P. Rebecca, N. Khalil, Multi-layer PZT stacking process for piezoelectric bimorph energy harvesters, Proc. of PowerMEMS 2011, Seoul, Republic of Korea, (2011) 139-142.

Google Scholar

[5] Z. Yang, E. Halvorsen, and T. Dong, Power generation from conductive droplet sliding on electrets film, Appl. Phys. Lett. 100, 213905 (2012).

DOI: 10.1063/1.4720517

Google Scholar

[6] Y. Yin, H. Ye, W. Zhan, L. Hong, H. Ma, J. Xu, Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials, SENSOR ACTUAT. A-PHYS. 171 (2001) 332-339.

DOI: 10.1016/j.sna.2011.09.012

Google Scholar

[7] V. Mortet, A. Soltani, A. Talbi, P. Pobedinskas, K. Haenen, J-C. De Jaeger, P. Pernod, P. Wagner, AlN on nanocrystalline diamond piezoelectric cantilevers for sensors/actuators, Procedia Chemistry, 1 (2009) 40-43.

DOI: 10.1016/j.proche.2009.07.010

Google Scholar

[8] C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio, AlN on polysilicon piezoelectric cantilevers for sensors/actuators, MICROELECTRON ENG. 86 (2009) 1204-1207.

DOI: 10.1016/j.mee.2008.12.075

Google Scholar

[9] M. Marzencki, Y. Ammar, S. Basrour, Integrated power harvesting system including a MEMS generator and a power management circuit, SENSOR ACTUAT. A-PHYS. 145-146 (2008) 363-370.

DOI: 10.1016/j.sna.2007.10.073

Google Scholar

[10] R. Andosca, T. G. McDonald, V. Genova, S. Rosenberg, J. Keating, C. Benedixen, J. Wu, Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading, SENSOR ACTUAT. A-PHYS. 178 (2012) 76-87.

DOI: 10.1016/j.sna.2012.02.028

Google Scholar

[11] Y. J. Lai, D. G. Senesky and A. P. Pisano, Genetic algorithm optimization for MEMS cantilevered piezoelectric energy harvesters, in Proc. Power MEMS 2010, Leuven, Belgium (2010) 111-114.

Google Scholar

[12] R. Clough, J. Penzien, Dynamics of Structures, third ed., Computers & Structures, Inc, Berkeley, 2003, pp.149-160.

Google Scholar

[13] S. N. Chen, G. J. Wang, M. C. Chien, Analytical modeling of piezoelectric vibration-induced micro power generator, Mechatronics 16 (2006) 379-387.

DOI: 10.1016/j.mechatronics.2006.03.003

Google Scholar

[14] T. Eggborn, Analytical models to predict power harvesting with piezoelectric materials, Virginia Polytechnic Institute and State University, Virginia, 2003, pp.45-47.

Google Scholar