Fabrication and Characterization of Tin Oxide Inverse Opal by Template Method

Article Preview

Abstract:

In this study, Tin Oxide (SnO2) inverse opal was fabricated by infiltrating SnO2 sol-gel precursor solution into Poly Styrene (PS) spheres crystal template which was generated via evaporative deposition self-assembling, then was heat treating at 500°C for two hours in controlled atmosphere box furnaces. PS spheres crystal template was characterized by Scanning electron microscope and Ultraviolet-visible-near infrared absorption spectrometer. The SnO2 inverse opal was characterized by Scanning electron microscope, Energy Diffraction Spectrum, X Ray Diffraction. The large-area, highly ordered SnO2 inverse opal was achieved in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

18-21

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D'Arienzo, M.; Armelao, L.; Cacciamani, A.; Mari, C. M.; Polizzi, S.; Ruffo, R.; Scotti, R.; Testino, A.; Wahba, L.; Morazzoni, F., One-Step Preparation of SnO2and Pt-Doped SnO2As Inverse Opal Thin Films for Gas Sensing. Chemistry of Materials 2010, 22 (13), 4083-4089.

DOI: 10.1021/cm100866g

Google Scholar

[2] Arsenault, E.; Soheilnia, N.; Ozin, G. A., Periodic Macroporous Nanocrystalline Antimony-Doped Tin Oxide Electrode. Acs Nano 2011, 5 (4), 2984-2988.

DOI: 10.1021/nn2000492

Google Scholar

[3] Sutti, A.; Baratto, C.; Calestani, G.; Dionigi, C.; Ferroni, M.; Faglia, G.; Sberveglieri, G., Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sensors and Actuators B: Chemical 2008, 130 (1), 567-573.

DOI: 10.1016/j.snb.2007.11.048

Google Scholar

[4] Wang, A.; Chen, S.-L.; Dong, P.; Zhou, Z., Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors. Synthetic Metals 2011, 161 (5-6), 504-507.

DOI: 10.1016/j.synthmet.2010.12.034

Google Scholar

[5] Cai, Z.; Teng, J.; Xiong, Z.; Li, Y.; Li, Q.; Lu, X.; Zhao, X. S., Fabrication of TiO2 Binary Inverse Opals without Overlayers via the Sandwich-Vacuum Infiltration of Precursor. Langmuir 2011, 27 (8), 5157-5164.

DOI: 10.1021/la200111j

Google Scholar

[6] Reese, C. E.; Guerrero, C. D.; Weissman, J. M.; Lee, K.; Asher, S. A., Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. Journal of Colloid and Interface Science 2000, 232 (1), 76-80.

DOI: 10.1006/jcis.2000.7190

Google Scholar

[7] Zhu Wen, Huang Fangting, Yang Runmiao, Zhang Ming, Preparation of Size Controllable Monodispersed Polystyene Microsphere by Dispersion Polymerization. Journal of Materials Sciences and Engineering 2012, 138(4):595-599.

Google Scholar

[8] Pang Chengxin, Zhang Lixia, Tan Jian, Ye Zhengmei, Chen Jinhao, The Study of Preparing Nanocrystalline SnO2by Sol-gel Method. Journal of Guangxi Teachers Education University(Natural Science Edition), 2006,23(3):26-40.

Google Scholar

[9] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-Crystal Colloidal Multilayers of Controlled Thickness. Chem. Mater. 1999, 11, 2132-2140.

DOI: 10.1021/cm990080+

Google Scholar

[101] Yan, G.; Zhang, X.; Huang, P.; Wang, L.; Qi, F.; Feng, B., Influence of deposition time on the morphology and optical properties of SiO2-ZnO composite photonic crystals. Chinese Science Bulletin 2011, 56 (6), 562-566.

DOI: 10.1007/s11434-010-4125-0

Google Scholar