Preparation of Graphene-Containing Composite Film and the Research on its Thermal Conductivity

Article Preview

Abstract:

A smooth and flexible carbon film was prepared via liquid exfoliation method followed by liquid evaporation using the natural flake graphite as the starting material. The XRD and Raman results demonstrated that the obtained film is composed of chemically reduced graphene, graphene oxide and graphite. The thermal transport property of the as-obtained film was investigated by light flash measurements. It is found that the as-obtained graphene-containing composite film has a high in-plane thermal diffusivity (2157 m2/s), and the corresponding thermal conductivity (754 W/m K) is higher than the other metal and normal graphite materials, which is very promising for applications requiring 2D heat conduction.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

538-542

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Bokros, Chemistry and Physics of Carbon, Marcel Dekker Inc., New York, 1969.

Google Scholar

[2] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[3] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B.Dommett, G. Evmenenko, S. T.Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457-460.

DOI: 10.1038/nature06016

Google Scholar

[4] S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking, ACS Nano 2 (2008) 572-578.

DOI: 10.1021/nn700349a

Google Scholar

[5] D. Li, R. B. Kaner, Graphene-based materials, Science 320 (2008) 1170-1171.

Google Scholar

[6] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[7] W. S. Hummers, R. E. Offeman, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, J. Am. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[8] A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47-57.

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[10] Y. Zhou, Q. L. Bao, L. A. L. Tang, Y. L. Zhong, K. P. Loh, Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties, Chem. Mater. 21 (2009) 2950-2956.

DOI: 10.1021/cm9006603

Google Scholar