Fabrication of ZnTiO3 Nanofibers by Electrospinning

Article Preview

Abstract:

Ultrathin fibers of PVP/ZnTiO3 composite were prepared through sol-gel processing and electrospinning technique. After calcined of the above precursor fibers at 600°C, the spinel ZnTiO3 nanofibers, with a diameter of 50-150nm, were successfully obtained. The fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier transform infrared (FT-IR), respectively. The results displayeded that the morphology and crystalline phase of the fibers were largely influenced by the calcination temperature. The reported strategy will be useful for fabricating one-by-one continuous nanofibers, which are suitable for applications in catalysis, chemical sensors, nanoelectrodes, and nanodevices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

57-61

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.E. Cavicchi, R.H. Silsbe, Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett. 52 (16) (1984) 1435-1456.

DOI: 10.1103/physrevlett.52.1453

Google Scholar

[2] P. Ball, L. Garrwin, Science at the atomic scale, Nature 355 (1992) 761-766.

Google Scholar

[3] Y. Shimizu, K. Uemura, N. Miura, N. Yamzoe, Gas-diffusion electrodes for oxygen reduction loaded with large surface area La1−xCaxMO3 (M = Co, Mn), Chem. Letts. 12 (1988) 1979-1982.

DOI: 10.1246/cl.1988.1979

Google Scholar

[4] H. Obayashi, Y. Sakurai, T. Gejo, Perovskite-type oxides as ethanol sensors, J. Solid State Chem. 17 (1976) 299-303.

DOI: 10.1016/0022-4596(76)90135-3

Google Scholar

[5] Y. Shimizu, H. Komatsu, S. Michishita, M. Miura, N. Yamazoe, Sensing characteristics of hydrogen peroxide sensor using carbon-based electrode loaded with perovskite-type oxide, Sensors and Actuators B 34 (1996) 493-498.

DOI: 10.1016/s0925-4005(97)80021-4

Google Scholar

[6] M. Skoglundh, L. Lowedalh, K. Janson, L. Dahl, M. Nygren, Structural characterization of nickel tantalum oxide synthesizedby sol–gel spin coating technique, Appl. Cataly. 53 (1970) 56-58.

Google Scholar

[7] H.B. Park, J.S. Kim, C.W. Lee, Synthesis of LiMn2O4 powder by auto-ignited combustion of poly(acrylic acid)-metal nitrate precursor, J. Power Sources 92 (2001) 124-130.

DOI: 10.1016/s0378-7753(00)00512-7

Google Scholar

[8] S.F. Wang, F. Gu, M.K. Lu, C.F. Song, D. Xu, D.R. Yuan, S.W. Liu, Photoluminescence of sol–gel derived ZnTiO3:Ni2+ nanocrystals, Chem. Phys. Lett. 373 (2003) 223–227.

DOI: 10.1016/s0009-2614(03)00620-1

Google Scholar

[9] Yamamoto O, Takeda Y, Kanno R, Noda M, Perovskite-Type Oxides As Oxygen Electrodes for High Temperature Oxide Fuel Cells, Solid State Ionics 22 (1987) 241-246.

DOI: 10.1016/0167-2738(87)90039-7

Google Scholar

[10] M.R. Mohammadia,b, D.J. Fray, Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio, J. Eur. Cera. Society 30 (2010) 947-961.

DOI: 10.1016/j.jeurceramsoc.2009.09.031

Google Scholar

[11] Y. S. Chang, Y. H. Changa, I. G. Chena, G. J. Chen, Y. L. Chai, T. H. Fang, S. Wu, Synthesis, formation and characterization of ZnTiO3 ceramics, Cera. International 30 (2004) 2183-2189.

DOI: 10.1016/j.ceramint.2004.01.002

Google Scholar

[12] A. Rougier, K.A. Striebel, S.J. Wen, T.J. Richardon, R.P. Reade, E.J. Cairns, Characterization of pulsed laser-deposited LiMn2O4 thin films for rechargeable lithium batteries, Appl. Surf. Sci. 134 (1998) 107-115.

DOI: 10.1016/s0169-4332(98)00234-7

Google Scholar

[13] K. Du, H. Zhang, Preparation and performance of spinel LiMn2O4 by a citrate route with combustion, J. Alloys Compounds 352 (2003) 250-254.

DOI: 10.1016/s0925-8388(02)01165-9

Google Scholar

[14] S. Z. Li, C. L. Shao, Y. C. Liu, S. S. Tang, R. X. Mu, Nanofibers and nanoplatelets of MoO3 via an electrospinning technique, J. Phy. Chem. Solids 67 (2006) 1869-1872.

DOI: 10.1016/j.jpcs.2006.04.017

Google Scholar

[15] H. Y. Guan, C. L. Shao, S. B. Wen, B. Chen, J. Gong, X. H.Yang, A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor, Mater. Chem. Phys. 82 (2003) 1002-1006.

DOI: 10.1016/j.matchemphys.2003.09.003

Google Scholar

[16] C. L. Shao, N. Yu, Y. C. Liu, R. X. Mu, Preparation of LiCoO2 nanofibers by electrospinning technique, J. Phy. Chem. Solids 67 (2006) 1423-1426.

DOI: 10.1016/j.jpcs.2006.01.104

Google Scholar

[17] H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Fabrication of NiCo2O4 nanofibers by electrospinning, Solid State Commun. 131 (2) (2004) 107-109.

DOI: 10.1016/j.ssc.2004.04.035

Google Scholar

[18] N. Yu, C. Shao, Y. Liu, H. Guan, X. Yang, Nanofibers of LiMn2O4 by electrospinning, Journal of Colloid and Interface Science 285 (2005) 163–166.

DOI: 10.1016/j.jcis.2004.11.014

Google Scholar

[19] D. Li, Y. Xia, Fabrication of tatania nanofibers by electrospinning, Nano. Lett. 3 (4) (2003) 555-560.

Google Scholar