Controllable Synthesis of Single-Crystal Monolayer Graphene on Copper Foils by Low-Pressure Chemical Vapor Deposition

Article Preview

Abstract:

~50 μm single crystal graphene with hexagonal flower shape was synthesized on copper foils by low pressure chemical vapor deposition (LPCVD). The strong influence of Cu foils annealing on suppressing the nucleation of graphene was observed. Scanning electron microscopy (SEM), Optical microscopy (OM), and Raman spectrum showed that single crystal graphene as grown was monolayer with high quality. Suppressing nucleation through an annealing procedure offers an promising way to grow large-scale single crystal graphene controllably.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

79-84

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Westervelt, Graphene Nanoelectronics, Science, 320(2008) 324-325.

Google Scholar

[2] F. schwierz, Graphene transistors, Nature Nanotechnology, 5 (2010) 487-496.

Google Scholar

[3] A.K. Geim, Graphene: Status and Prospects, Science, 324 (2009) 1530-1534.

Google Scholar

[4] T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, K. Ensslin, Graphene single electron transistors, Materialstoday, 13 (2010) 45-50.

DOI: 10.1016/s1369-7021(10)70033-x

Google Scholar

[5] C. Mattevi, H. Kima, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., 21 (2011) 3324–3334.

DOI: 10.1039/c0jm02126a

Google Scholar

[6] D. Wei, Y. Liu, Controllable synthesis of graphene and its applications, Adv. Mater., 22 (2010) 3225–3241.

DOI: 10.1002/adma.200904144

Google Scholar

[7] S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Kim, Y. Song, Y. Kim, K.S. Kim, B. Ozyilmaz, J. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes Nature Nanotecnology, 5 (2010) 574-578.

DOI: 10.1038/nnano.2010.132

Google Scholar

[8] H.S. Song, S.L. Li, H. Miyazaki, S. Sato, K. Hayashi, A. Yamada, N. Yokoyama, K. Tsukagoshi, Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition, Nature, 2(2012) 307.

DOI: 10.1038/srep00337

Google Scholar

[9] G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste, ACS Nano, 5 (2011) 7601-7607.

DOI: 10.1021/nn202625c

Google Scholar

[10] W. Wu, L.A. Jauregui, Z. Su, Z. Liu, J. Bao, Y.P. Chen, Q. Yu, Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition, Adv. Mater., 23 (2011) 4898-4903.

DOI: 10.1002/adma.201102456

Google Scholar

[11] H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, W. Zhang, Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation, J. Am. Chem. Soc., 134 (2012) 3627−3630.

DOI: 10.1021/ja2105976

Google Scholar

[12] J. Gao, J. Yip, J. Zhao, B. I. Yakobson, F. Ding, Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge, J. Am. Chem. Soc., 134 (2011) 9534.

DOI: 10.1021/ja3040398

Google Scholar