Controlled Synthesis of Surface-Clean Monolayer Graphene

Article Preview

Abstract:

Controlled synthesis surface-clean monolayer graphene was achieved. Monolayer Graphene was achieved by mechanical exfoliation (ME) and chemical vapor deposition (CVD),and then transferred to SiO2 (300nm)/Si substrates. There were tape residues left on the surface of the ME graphene, and poly (methyl methacrylate) (PMMA)/photoresist residues left on the surface of the CVD graphene after the transferring and lithography process. Annealing method was used to clean all these kinds of residues. Annealing processes were performed at different temperatures in both vacuum and N2/H2. It is conclude that N2/H2 is crucial for the removing of residues, and 400°C is favorable for removing the residues. Atomic force microscope (AFM) images and Raman spectra were taken to confirm the effect of the annealing.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

85-90

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] Park S and Ruoff R S, Chemical methods for the production of graphenes, Nature Nanotech. 4 (2009) 217-224.

DOI: 10.1038/nnano.2009.58

Google Scholar

[3] First P N, de Heer W A, Seyller T, Berger C, Stroscio J A and Moon J S, Epitaxial graphenes on silicon carbide, Mrs Bull. 35 (2010) 296-305.

DOI: 10.1557/mrs2010.552

Google Scholar

[4] Gass M H, Bangert U, Bleloch A L, Wang P, Nair R R and Geim A K, Free-standing graphene at atomic resolution, Nature Nanotech. 3 (2008) 676-681.

DOI: 10.1038/nnano.2008.280

Google Scholar

[5] Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J, Transferring and identification of single- and few-layer graphene on arbitrary substrates, J. Phys. Chem. C. 112 (2008) 17741-17744.

DOI: 10.1021/jp807380s

Google Scholar

[6] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S, Graphene segregated on ni surfaces and transferred to insulators, Appl. Phys. Lett. 93 (2008) 113103.

DOI: 10.1063/1.2982585

Google Scholar

[7] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[8] Yu Q K, Jauregui L A, Wu W, Colby R, Tian J F, Su Z H, Cao H L, Liu Z H, Pandey D, Wei D G, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J M, Pei S S and Chen Y P, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nature Mater. 10 (2011) 443-449.

DOI: 10.1038/nmat3010

Google Scholar

[9] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102 (2005) 10451-10453.

DOI: 10.1073/pnas.0502848102

Google Scholar

[10] Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotech. 5 (2010) 574-578.

DOI: 10.1038/nnano.2010.132

Google Scholar

[11] Li X S, Magnuson C W, Venugopal A, An J H, Suk J W, Han B Y, Borysiak M, Cai W W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L and Ruoff R S, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett. 10 (2010) 4328-4334.

DOI: 10.1021/nl101629g

Google Scholar

[12] Li X S, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L and Ruoff R S, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, J. Am. Chem. Soc. 133 (2011) 2816-2819.

DOI: 10.1021/ja109793s

Google Scholar

[13] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9 (2009) 4359-4363.

DOI: 10.1021/nl902623y

Google Scholar

[14] Liang X L, Sperling B A, Calizo I, Cheng G J, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H L, Li Q L, Zhu X X, Yuan H, Walker A, Liu Z F, Peng L M and Richter C A, Toward clean and crackless transfer of graphene, Acs Nano 5 (2011) 9144-9153.

DOI: 10.1021/nn203377t

Google Scholar

[15] Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D, Atomic structure of graphene on SiO2, Nano Lett. 7 (2007) 1643-1648.

DOI: 10.1021/nl070613a

Google Scholar

[16] Lin Y C, Lu C C, Yeh C H, Jin C H, Suenaga K and Chiu P W, Graphene annealing: How clean can it be? Nano Lett. 12 (2012) 414-419.

DOI: 10.1021/nl203733r

Google Scholar

[17] Dan Y P, Lu Y, Kybert N J, Luo Z T and Johnson A, Intrinsic response of graphene vapor sensors, Nano Lett. 9 (2009) 1472-1475.

DOI: 10.1021/nl8033637

Google Scholar

[18] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, Mcdonnell S, Colombo L, Vogel E M, Ruoff R S and Wallace R M, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Appl. Phys. Lett. 99 (2011) 122108.

DOI: 10.1063/1.3643444

Google Scholar

[19] Stolyarova E, Rim K T, Ryu S M, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S and Flynn G W, High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proc. Natl. Acad. Sci. USA 104 (2007) 9209-9212.

DOI: 10.1073/pnas.0703337104

Google Scholar

[20] Cheng Z G, Zhou Q Y, Wang C X, Li Q A, Wang C and Fang Y, Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices, Nano Lett. 11 (2011) 767-771.

DOI: 10.1021/nl103977d

Google Scholar

[21] Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D, Atomic structure of graphene on sio2, Nano Lett. 7 (2007) 1643-1648.

DOI: 10.1021/nl070613a

Google Scholar

[22] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami M, Charged-impurity scattering in graphene, Nature Physics 4 (2008) 377-381.

DOI: 10.1038/nphys935

Google Scholar

[23] Giesbers A, Rietveld G, Houtzager E, Zeitler U, Yang R, Novoselov K S, Geim A K and Maan J C, Quantum resistance metrology in graphene, Appl. Phys. Lett. 93 (2008) 222109.

DOI: 10.1063/1.3043426

Google Scholar

[24] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K, Room-temperature quantum hall effect in graphene, Science 315 (2007) 1379.

DOI: 10.1126/science.1137201

Google Scholar