A Study on Size Effect of Indenter in Nanoindentation via Molecular Dynamics Simulation

Article Preview

Abstract:

A series of three-dimensional molecular dynamics (MD) simulations of nanoindentation are conducted to investigate the deformation behavior and phase transformation of monocrystalline silicon with different size hemispherical diamond indenters on (010) crystal plane. The technique of coordination number (CN) is employed to elucidate the detailed mechanism of phase transformation in the monocrystalline silicon. The simulation results show that the phase transformation varies according to the different radii indenters. In the phase transformation region beneath the indenter, the crystalline structures of Si-II, Si-XIII, and amorphous phase structures are observed. In addition, the results indicate that phase transformation with large indenters is not same with the small indenter. The six-coordinated silicon phase, Si-XIII, transformed from Si-I is identified. The phases of Si-II and Si-XIII, which have the same coordinate number, are successfully extracted from the transformation region during nanoindentation and amorphous phase will emerge upon unloading.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

802-808

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Bhushan, Nanoscale tribophysics and tribomechanics, Wear. 225-229 (1999) 465-492.

DOI: 10.1016/s0043-1648(99)00018-6

Google Scholar

[2] B. Bhushan, Micro/ Nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28 (1995) 85-96.

DOI: 10.1016/0301-679x(95)92698-5

Google Scholar

[3] T. Fang, C. Weng, J. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement, Materials Science and Engineering A. 357 (2003) 7-12.

DOI: 10.1016/s0921-5093(03)00219-3

Google Scholar

[4] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[5] B. Bhushan and VN Koinkar, Nanoindentation hardness measurements using atomic force microscopy, Appl Phys. Lett. 64 (1994) 1653-1655.

DOI: 10.1063/1.111949

Google Scholar

[6] T. Fang, W. Chang, Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique, Microelectronic engineering. 65 (2003) 231-238.

DOI: 10.1016/s0167-9317(02)00885-7

Google Scholar

[7] G.S. Smith, E.B. Tadmor, Efthimios Kaxiras, Multiscale Simulation of Loading and Electrical Resistance in Silicon Nanoindentation, Phys. Rev. Lett. 84, (2000) 1260-1263.

DOI: 10.1103/physrevlett.84.1260

Google Scholar

[8] K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification, Nanotechnology. 20 (2009) 305705.

DOI: 10.1088/0957-4484/20/30/305705

Google Scholar

[9] W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation, Nanotechnology. 11 (2000) 173-180.

DOI: 10.1088/0957-4484/11/3/307

Google Scholar

[10] Y.H. Lin, S.R. Jian, Y.S. Lai, P.F. Yang, Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon, Nanoscale Res Lett. 3 (2008) 71-75.

DOI: 10.1007/s11671-008-9119-3

Google Scholar

[11] J. Tersoff, Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Phys. Rev. B. 39 (1989) 5566-5568.

DOI: 10.1103/physrevb.39.5566

Google Scholar

[12] S.J. Plimpton, Pollock R, Stevens M: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March. 1997.

Google Scholar

[13] Q. Tang, F. Chen, MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip, J. Phys. D: Appl. Phys. 39 (2006) 3674-3679.

DOI: 10.1088/0022-3727/39/16/022

Google Scholar

[14] V. Domnich, Y. Gogotsi, S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Applied Physics Letters. 76 (2000) 2214.

DOI: 10.1063/1.126300

Google Scholar