[1]
B. Bhushan, Nanoscale tribophysics and tribomechanics, Wear. 225-229 (1999) 465-492.
DOI: 10.1016/s0043-1648(99)00018-6
Google Scholar
[2]
B. Bhushan, Micro/ Nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28 (1995) 85-96.
DOI: 10.1016/0301-679x(95)92698-5
Google Scholar
[3]
T. Fang, C. Weng, J. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement, Materials Science and Engineering A. 357 (2003) 7-12.
DOI: 10.1016/s0921-5093(03)00219-3
Google Scholar
[4]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research. 7 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[5]
B. Bhushan and VN Koinkar, Nanoindentation hardness measurements using atomic force microscopy, Appl Phys. Lett. 64 (1994) 1653-1655.
DOI: 10.1063/1.111949
Google Scholar
[6]
T. Fang, W. Chang, Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique, Microelectronic engineering. 65 (2003) 231-238.
DOI: 10.1016/s0167-9317(02)00885-7
Google Scholar
[7]
G.S. Smith, E.B. Tadmor, Efthimios Kaxiras, Multiscale Simulation of Loading and Electrical Resistance in Silicon Nanoindentation, Phys. Rev. Lett. 84, (2000) 1260-1263.
DOI: 10.1103/physrevlett.84.1260
Google Scholar
[8]
K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification, Nanotechnology. 20 (2009) 305705.
DOI: 10.1088/0957-4484/20/30/305705
Google Scholar
[9]
W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation, Nanotechnology. 11 (2000) 173-180.
DOI: 10.1088/0957-4484/11/3/307
Google Scholar
[10]
Y.H. Lin, S.R. Jian, Y.S. Lai, P.F. Yang, Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon, Nanoscale Res Lett. 3 (2008) 71-75.
DOI: 10.1007/s11671-008-9119-3
Google Scholar
[11]
J. Tersoff, Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Phys. Rev. B. 39 (1989) 5566-5568.
DOI: 10.1103/physrevb.39.5566
Google Scholar
[12]
S.J. Plimpton, Pollock R, Stevens M: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March. 1997.
Google Scholar
[13]
Q. Tang, F. Chen, MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip, J. Phys. D: Appl. Phys. 39 (2006) 3674-3679.
DOI: 10.1088/0022-3727/39/16/022
Google Scholar
[14]
V. Domnich, Y. Gogotsi, S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Applied Physics Letters. 76 (2000) 2214.
DOI: 10.1063/1.126300
Google Scholar