Design and Manufacture of Micro Interference System in Spatial Modulation Fourier Transform Spectrometer

Article Preview

Abstract:

Spatial modulation Fourier transform spectrometer(FTS) based on micro step mirror arrays with high optical path difference sampling precision was a new high-tech measuring instrument. To depress the interferogram aliasing resulted from the chromatic dispersion of beam splitter, considering interferogram contrast reversal as the criterion of image degradation, the thickness difference between beam splitter and compensating plate was determined smaller than 0.2μm. So as to restrain the ghost images induced by secondary reflection on the surface of beam splitter, the transmittance of anti-reflection film should be more than 98% and the transmittance of beam splitter film should be controlled within (50±5) %. Since the restriction of processing method and machining accuracy to micro step mirrors, the thickness deviation and angle deviation existed between various sub-mirrors. After the error synthesis to sub-mirror errors using Monte Carlo method, the tolerance of the thickness deviation and angle deviation was controlled in 1μm and 2×10-5rad. Meanwhile, the step height deviation of micro step mirrors may induce non uniform sampling to interference signal. Thus a spectrum method by least-squares cosines progression arithmetic was advanced and the validity of which was demonstrated well.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

973-978

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Brachet, P.J. Hebert, E. Cansot, C.Buil, A. Lacan, L.Roucayrol, E.Courau, F.Bernard, C. Casteras, J. Loesel, C. Pierangelo, Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate, Proc. of SPIE, 7100 (2008) 710019.

DOI: 10.1117/12.797686

Google Scholar

[2] A. Lacan, F.M. Breon, A. Rosak, F.Brachet, L. Roucayrol, P.Etcheto, C.Casteras, Y.Salaun, A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation, Opt. Express, 18 (2010) 8311-8331.

DOI: 10.1364/oe.18.008311

Google Scholar

[3] J. Sin, W. H. Lee, D. Popa, H. Stephanou, Assembled Fourier transform mirco-spectrometer, Proc. of SPIE, 6109 (2006) 610904.

Google Scholar

[4] J. E. Lawler, Z. E. Labby, J. M. Harlander, F. L. Roesler, Broadband high-resolution spatial heterodyne spectrometer, Appl. Opt., 47 (2008) 6371-6384.

DOI: 10.1364/ao.47.006371

Google Scholar

[5] G. Boer, P. Ruffieux, T. Scharf, P. Seitz, R. Dandliker, Compact liquid-crystal-polymer Fourier transform spectrometer, Appl. Opt., 43 (2004) 2201-2208.

DOI: 10.1364/ao.43.002201

Google Scholar

[6] B. Martin, A. Morand, P. Benech, G. Leblond, S. Blaize, G. Lerondel, P. Royer, P. Kern, E. L. Coarer, Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure, Opt. Lett., 34 (2009) 184-186.

DOI: 10.1364/ol.34.000184

Google Scholar

[7] K. D. Moller, Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV, Appl. Opt., 34 (1995) 1493-1501.

DOI: 10.1364/ao.34.001493

Google Scholar

[8] E. V. Ivanov, Static Fourier transform spectroscopy with enhanced resolving power, J. Opt. A., 2 (2000) 519-528.

DOI: 10.1088/1464-4258/2/6/304

Google Scholar

[9] C. Feng, B. Wang, Z. Z. Liang, J. Q. Liang, Miniaturization of step mirrors in a static Fourier transform spectrometer theory and simulation, J. Opt. Soc. Am. B, 28 (2010) 128-133.

DOI: 10.1364/josab.28.000128

Google Scholar

[10] C. Feng, J. Q. Liang, Z. Z. Liang, Spectrum constructing with nonuniform samples using least-squares approximation by cosine polynomials, Appl. Opt., 50 (2011) 6377-6383.

DOI: 10.1364/ao.50.006377

Google Scholar

[11] Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, J. Zhang, Microassembled Fourier transform spectrometer, Proc. of SPIE, 7283 (2009) 728304.

Google Scholar

[12] J. Q. Liang, Z. Z. Liang, J. G. Lv, J. G. Fu, Y. Zheng, C. Feng, W. B. Wang, W. B. Zhu, J. S. Yao, J. Zhang, Simulation and experiment of the static FTIR based on micro-step mirrors, Proc. SPIE, 8191 (2011) 819104.

DOI: 10.1117/12.900952

Google Scholar

[13] J. G. Lv, J. Q. Liang, Z. Z. Liang, Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer, Acta Phys. Sin., 61 (2012) 140702.

DOI: 10.7498/aps.61.140702

Google Scholar